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Abstract

Human actions can alter the climate via land use. We analyze the 1930s Great
Plains Shelterbelt, a large-scale forestation program across the US Midwest.
The program increased precipitation and decreased temperatures for decades.
Changes extended 200km downwind – enabling us to study climate adaptation.
Improved growing conditions allowed farmers to expand corn acreage, adopt
water-intensive practices, and reduce crop failures. In a period of farm consol-
idation, this contributed to the survival of small farms but less farm machine
usage. The findings underscore the endogeneity of climate to land use change
and the long-term impacts of tree planting on agricultural development.
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1 Introduction

Tree planting programs are widely popular among policy-makers and companies worldwide.
Seeking to reduce their net carbon emissions, governments have pledged 500 million hectares
of land for tree-planting by 2050 under the Paris Agreement, more than the areas of South
Africa, India, and Turkey combined (Self et al. 2023), while the World Economic Forum
launched a One Trillion Trees initiative. In addition, large-scale tree planting is occurring in
urban settings to provide local shade and cooling, and in rural areas to mitigate soil erosion,
dust storms, and landslides.

Another potential outcome of large-scale tree planting has been proposed by the natural
science literature, but garnered less attention in public discourse: a change in the regional
climate, driven by the impact of trees on energy and water fluxes. Atmospheric models
predict an increase in precipitation where trees are planted, as well as in downwind areas
(Bonan 2008).1 This potential policy-induced change in the local climate implies that large-
scale tree planting could also affect economic outcomes through both mechanical effects (e.g.,
more favorable weather increases crop yields) and responses from individuals and firms (e.g.,
climate adaptation). These economic effects can manifest locally where trees are planted,
but also in locations downwind that are not directly affected by the policy but experience a
policy-induced change in climate nonetheless.

In this paper, we examine the causal impact of a large-scale tree-planting program on both
climate and economic outcomes. We empirically test the qualitative climate predictions from
atmospheric models in response to afforestation, and estimate the resulting magnitudes. We
then study the consequences of this policy-induced climate change on agricultural develop-
ment, and assess the role of climate adaptation.

We focus on the Great Plains Shelterbelt in the United States. Planned in response to the
Dust Bowl, this government-funded program aimed to reduce soil erosion and dust storms in
the US Midwest. Announced in 1932 and implemented from 1935 to 1942, the program led
to the planting of 220 million trees. The trees were grown in windbreaks, which consisted
of numerous strips of trees planted between fields and farms, occupying only 0.3% of the
total area of the affected counties despite the program’s scale. The resulting ‘belt’ of trees
bisected the US from north to south, spanning 1,700km and crossing six states from North
Dakota to Texas.
1 For temperature, the net local effect depends on land characteristics. Trees can increase evapotranspiration,

which reduces temperatures. But since trees are generally darker than the land they are planted on (e.g.,
cropland or grassland), they can decrease albedo and surface reflection, thus raising temperatures.
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The largest afforestation effort of its time, the Great Plains Shelterbelt is now rivaled in scope
by multiple tree-planting projects worldwide. While it was implemented over 80 years ago,
we note that the socioeconomic conditions of the US Midwest in the 1940s are comparable
to many lower and middle-income countries where similar programs are being designed and
implemented today. We therefore focus on this specific program to leverage its unique
characteristics. The historical context provides the long time frame required for a direct
study of the drivers and consequences of climate change, i.e., changes in the distribution of
weather events over time. By combining USDA census data with information on climate and
land use, we can empirically consider a rich set of outcomes over a long period (for our main
sample, 1930-1965) and precisely characterize the adaptation to climate change.

The short and delimited policy implementation period allows for simple and clean identifi-
cation strategies. We use a difference-in-differences strategy that exploits prevailing winds,
which is the primary physical mechanism by which trees planted in a given location affect
climate in nearby areas where the program is not implemented. We construct a wind expo-
sure measure based on large-scale prevailing summer winds to approximate a given location’s
exposure to winds arriving from areas afforested under the Shelterbelt. We then use varia-
tion in this wind measure to compare the evolution in outcomes between areas that are, on
average, more exposed to summer winds from afforested areas, to areas that are less exposed.
We augment the simple difference-in-differences specification with a set of baseline controls
to satisfy the identification requirements of our strategy.

We demonstrate that our empirical strategy is valid, and our results robust to potential
threats to identification, including the Dust Bowl and medium-term climate fluctuations, the
correlation of wind patterns with spatially differentiated climate trends, the strategic location
of tree planting, spatial general equilibrium effects, the timing of the effects from planting
trees, and irrigation. Among other approaches, this includes designing and implementing an
instrumental variable strategy, a long differences, a synthetic difference-in-differences, and
running various tests on subsamples and outcomes. The results we present below are robust
to these potential confounds.

In a first step, we show that large-scale tree planting substantially alters the climate. To
assess effect size, we compare counties in the 75th percentile of exposure to summer winds
blowing through the Shelterbelt afforested areas to those in the 25th percentile. We find that
precipitation increased by 3%, or 2.1mm per month, during the summer months (p < 0.001),
and maximum temperature decreased by 0.9% (-0.28°C, p < 0.001) as well (Table 2. Extreme
heat, which has a strong negative impact on yields, decreased even more dramatically, with
degree days above 29°C falling 7% (p < 0.001) in counties more exposed to winds from the
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Shelterbelt. The direction of these effects is consistent with atmospheric model predictions.
Importantly, they are not limited to where the trees are planted: we find similar effects of
exposure to winds blowing through the Shelterbelt in neighboring areas.

Having established that the Shelterbelt project induces climate change, our second step
involves estimating the consequences of this climate change on the economy and assessing
the role of adaptation. We limit our analysis to areas near, but not directly afforested under
the Shelterbelt project, to isolate the effect of climate change from other changes potentially
associated with Shelterbelt participation. We focus on agriculture, a sector highly exposed
to climate and representative of a large share of the economy of the post-war US Midwest.

We find that the production of corn, the key crop in the US Midwest, strongly increased
in response to this policy-induced climate change in counties downwind from the Shelter-
belt. Corn production increased by 30% in counties in the 75th percentile of wind exposure
compared to counties in the 25th percentile (p = 0.001). This effect is mostly driven by an
expansion in the area of corn harvested by 25% (p = 0.005), with a more modest increase in
yields by 5% (p = 0.053).

We can explain this large increase in corn production by analyzing both a climate adaptation
response from farmers and a mechanical increase in production following improved growing
conditions. We find that crop failure decreased downwind from the Shelterbelt (p = 0.004),
consistent with a reduction in extreme temperatures and increased precipitation. In addition,
we observe a reallocation of cropland away from less water-intensive crops (e.g., wheat,
p < 0.001) and towards more water-intensive crops (e.g., corn, p < 0.001), while total
cropland remains fixed (p = 0.497). Overall, the increase in corn production is primarily
explained by climate adaptation, with farmers updating their crop mix decisions when faced
with a different climate.

These changes took place in a period of rapid farm consolidation in the US, where by 1965
the number of farms halved, and the average farm size doubled (Dimitri et al. 2005). While
much of this ‘exit from agriculture’ was driven by secular trends in agricultural technology—
including the use of machines on larger farms—and structural transformation, we investigate
whether the downwind effects of the Shelterbelt can explain spatial differences in farm con-
solidation.

The relative number of small farms increased in counties downwind from the Shelterbelt
(p = 0.035), at the expense of mid-sized farms. The improved climate from afforestation
slowed down consolidation—likely through the reduction in crop failure events, which has
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been shown to drive farmer exit and migration (Hornbeck 2012).2 The relative increase in
the number of farms during this period of consolidation shows the potential role climate
adaptation can play in smallholder farmer resilience.

This reduced farm consolidation, together with crop switching, led to changes in the choice
of inputs used in the production process. Areas exposed to the improved climate exhibit
higher spending on fertilizer (p = 0.009)—consistent with the switch from wheat to corn,
which typically requires more fertilizer to maximize yields. They also exhibit lower spending
on hired machines (p = 0.008) while retaining similar spending on hired labor (p = 0.478)—
consistent with a story of lower returns to mechanization on smaller farms. But we also find
that this resulted in lower farm values (3.9% lower overall value of agricultural land and
buildings, p = 0.018), suggesting lower productivity and a potential ‘lock in’ into agriculture
during a period of structural transformation. Overall, our results indicate that improving
the climate through land use policy has significant consequences for long-term agricultural
development.

Our study advances our understanding of the interactions between climate and the economy,
both substantively and methodologically. First, we contribute to an emerging literature on
the endogeneity of local climate to land use. Economists generally assume local climate to
be exogenous to local socioeconomic outcomes; we provide new evidence that this is not
the case.3 Recent work in this vein includes Braun and Schlenker (2023), who find that
the historical expansion of irrigation in the US affected temperature, both locally and in
downwind areas. In the Amazonian context, Araujo (2023) finds a downwind precipitation
response to deforestation,4 and then models farmer responses in terms of land use and
agricultural productivity. Taken together, these recent working papers confirm the external
validity of the endogeneity of climate to land use changes in a range of settings, and the
potential follow-on socioeconomic impacts. However, neither paper maps to an explicit
policy choice contemplated by governments around the world in response to climate change:
large-scale tree planting.

Next, we describe the methodological implications that extend from our findings on climate
2 Crop insurance did not become widespread in the US until the Federal Crop Insurance Act of 1980.
3 This idea has long been explored in the natural science literature. Atmospheric models are used to describe

the response of local and regional climate to changes in land use (Devaraju et al. 2015). Other studies
estimate the reduced-form climate effect of various land use changes, including irrigation (e.g., Lobell et
al. 2008; DeAngelis et al. 2010; Mueller et al. 2016; Braun and Schlenker 2023), crop choice (Loarie
et al. 2011; Georgescu et al. 2011), and forestation (Smith et al. 2023; Alkama and Cescatti 2016; Peng
et al. 2014). Many of these studies are either observational or compare trends in areas with land use change
to adjacent unchanged areas, and, therefore, cannot identify spillover effects.

4 A large body of natural science work has investigated the local and regional climate impacts of deforestation
(Spracklen and Garcia-Carreras 2015), generally finding it reduces precipitation.
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endogeneity. The response of agricultural production to changes in the climate is a key
parameter to assessing the economic consequences of climate change, with implications for
food security, structural transformation, migration, and trade flows. As detailed below, we
propose a reduced-form approach to estimating this response using a policy-induced change
in the long-run climate to measure productivity effects, inclusive of adaptive responses. This
resulting elasticity comprises both i) the direct mechanical effect of weather shocks drawn
from a different distribution (i.e., climate change) and ii) the effects of adaptation to the
new climate.

In terms of the direct impact of climate change, our findings have implications for the vast
body of work that uses climate as a source of identifying variation. While debates on the
economic effects of climate can be traced back centuries (Montesquieu 1750), the credibility
revolution in economics and growing concerns about anthropogenic climate change have
spurred a revival of studies focusing on climate impacts. A wide range of outcomes are
affected by annual weather shocks (see Dell et al. 2012 for a seminal paper, and for reviews
Dell et al. 2014 and Carleton and Hsiang 2016). However, identifying the effects of climate
change from short-term weather shocks presents challenges (Hsiang 2016; Kolstad and Moore
2020; Lemoine 2021).5

One approach to assessing adaptation involves accounting for how responses to climate shocks
vary across space by average climate (Butler and Huybers 2013; Heutel et al. 2021; Auffham-
mer 2022; Hultgren et al. 2022), the idea being that if the same extreme heat event causes less
deaths in a warm climate than a cold climate, that difference is (partly) due to adaptation.
This useful and intuitive approach still faces concerns about potential confounders across
geographies, as well as the “weather-vs-climate” issue discussed above. Another way to get
at adaptation is through “long differences”: estimating the correlation between long-term
changes in climate and outcomes of interest (Burke and Emerick 2016). Identification then
relies on the assumption that long-term trends in climate are exogenously determined across
spatial units. Our results showcase the potential for reverse causality-driven bias when using
spatial variation in climate trends to assess impacts on economic outcomes—given that these
climate trends themselves may be driven by endogenously-determined policies—and thereby
invite increased caution when using climate trends as a source of identifying variation.

By demonstrating that local climate change can be policy-induced, our study provides a
natural direction to advance this literature. We can use standard empirical tools, such as
5 The effect of weather shocks can be larger than climate change if adaptation is less costly over the long run

than over the short run (e.g., if fixed cost investments are required). The converse is possible if short-run
adaptation strategies like irrigation become more costly over time (Hornbeck and Keskin 2014).
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difference-in-differences or regression discontinuity design, to assess whether policies have
the potential to affect the climate and to subsequently study the consequences of this policy-
induced climate change. Importantly, exploiting such policy changes enables researchers to
argue more convincingly for causal identification of climate effects, particularly in locations
downwind or otherwise not directly affected by the policy.6

In an agricultural context, existing research provides valuable insights on how economic
agents respond to productivity shocks, including soil erosion from the US Dust Bowl (Horn-
beck 2012) and permanent reductions in groundwater in India (Blakeslee et al. 2020). Eco-
nomic agents, however, may respond differently to climate change—that we conceptualize,
following Hsiang (2016), as a permanent change in the distribution of transitory produc-
tivity shocks—than to single, either permanent or transitory, productivity shocks. There is
a robust body of work on US crop yield responses and adaptation to climate change, with
mixed results.7 Most of our current knowledge of mechanisms for agricultural adaptation to
climate comes from observational studies.8

Our work relates to studies on adaptation to medium-to-long-term fluctuations in the mon-
soon regime in India (Kala 2017; Taraz 2017; Liu et al., forthcoming). These generally
combine agricultural and economic data over several decades with five- to ten-year changes
in the timing and intensity of monsoons to provide causal evidence on crop and labor adap-
tation. Our study advances this literature by providing direct causal evidence of significant
farmer adaptation to a long-term change in continental climate across a range of dimensions,
and estimates how these responses moderate the overall impact of climate change (relative
to no adaptation). Our paper also builds on work studying the Great Plains Shelterbelt over
the long term, and its effect on local agriculture practices and outcomes (Li 2021; Howlader
2023).

In summary, we find that the Great Plains Shelterbelt—in part inspired by a climate shock
itself—induced a significant change in regional climate. This policy-driven climate change,
in turn, affected economic outcomes for decades in locations downwind from the policy itself.
We also find strong evidence of climate adaptation by farmers. The geographic scale of these
6 Our findings also have implications for our understanding of place-based policies involving localized changes

in productivity (Kline and Moretti 2014; Bustos et al. 2016; Bustos et al. 2020; Asher et al. 2022;
Hornbeck and Moretti 2023). Our study, which shows that land use policy can induce climate change
across an area far beyond where the policy is implemented, demonstrates economic spillovers through a
third potential channel involving climate change.

7 See, for instance, Schlenker and Roberts 2009; Butler and Huybers 2013; Annan and Schlenker 2015;
Burke and Emerick 2016; Malikov et al. 2020; Yu et al. 2021.

8 Such adaptive channels include crop choice (Kurukulasuriya and Mendelsohn 2008; Sloat et al. 2020; Cui
2020; Burlig et al. 2021), ecological practices (Schulte et al. 2017), and irrigation (Taylor 2022).
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effects are large, encompassing an area twice the size of California.

Recent global enthusiasm for tree planting for climate change mitigation raises many ques-
tions about how to best design tree planting projects. There are many valid concerns about
large-scale tree planting, including the scale of the land required, the timing and perma-
nence of the CO2 reductions, and its potential ecological impacts. We believe our study
of the Great Plains Shelterbelt, which entailed a unique ecological design that we describe
later, is relevant to the many countries considering large-scale tree planting projects as a way
to meet their national climate mitigation targets and maximize societal benefits. This is es-
pecially true among countries still highly dependent on agriculture (like the US Midwest in
the 1940s), as well as global breadbasket regions with similar soil and climate characteristics
to the US Great Plains.

2 Background

The Great Plains Shelterbelt Project, also known as the Prairie States Forestry Project, was a
Great Depression-era effort to plant forest buffers and windbreaks in the US Midwest. It was
the largest afforestation program to date, with over 220 million trees planted between 1935
and 1942. This short implementation period, combined with a defined target area, makes
this program an ideal candidate to identify the causal effects of large-scale tree planting on
climate and agricultural development.

Franklin D. Roosevelt (FDR) conceived the Shelterbelt idea while running for president in
1932, upon observing on the campaign trail the damages from the destructive Dust Bowl
(Droze 1977). FDR had a long-running interest in forestry and experience with reforestation
projects as Governor of New York, and believed that an investment in forestry might improve
the climate and agriculture of the Great Plains. As president, he commissioned a report
recommending the planting of trees in 100-foot strips, or “shelterbelts” that protect homes,
crops, and livestock from the wind and destructive dust storms.9 FDR’s plan called for a
shelterbelt 100 miles across and 1,300 miles long, roughly bisecting the continental US from
North Dakota to Texas along the country’s 18-inch rainfall line.

FDR signed an executive order in 1934, and the first tree was planted in 1935 in Oklahoma.
The program continued until 1942, when funding cuts resulting from the US’s World War
II effort brought it to a stop (Droze 1977). Planting happened mostly as shelterbelts rather
9 Another common conservation tool involved rotating portions of fields into ‘fallowed strips’ that are not

plowed in a given year and thus secure the soil and provide a small windbreak (Hansen and Libecap 2004).
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than patches of forest, according to the plan. Overall, the geographic boundaries from the
original plan were not fully respected: Figure S9 shows both the planned and actual zones
for Shelterbelt planting. Note that our empirical strategy directly addresses the potential
endogeneity of farmer uptake and the location of tree planting, addressing concerns about
prior exposure to the Dust Bowl and strategic location choice accounting for expected climate
spillovers. These factors are unlikely to be driving the effects we estimate, as explained in
Section 4.

Early on, there was interest in the Great Plains project’s potential influence on local climate.
When first reporting on the initiative, the New York Times described it as an “experiment
in climate control to combat the ravages of drought” (“Tree Belt in West to Fight Droughts”
1934), and Snow (2019) presents the controversy around the program as a battle between
‘ecological foresters’ who believed that policy decisions influence local climate and environ-
mental conditions and ‘determinist geographers’ who saw climate as static.

Specific implementation procedures were key to the program’s success. For the most part,
seedlings from nurseries were planted instead of seeds to increase survival rates. In total,
over 30 species of trees and shrubs were selected—tall and short trees, fast and slow growing
trees, hardwoods, and conifers—most of which were native and thus locally adapted (Read
1958) to ensure species diversity and ecological resilience in a way that mimicked naturally-
occurring forests. In considering the program’s impact on the water cycle, it is important to
note that irrigation was not used to establish the trees. At first, the government leased the
land for tree planting, but soon transitioned to cost-sharing programs with landowners. The
Great Plains project was later part of the Works Progress Administration, which required
90% of Shelterbelt laborers to be hired from the relief rolls.

3 Data

Our main analysis is based on a county-by-year panel dataset, constructed from four types
of data: digitized historical maps of Shelterbelt plantings, wind data to construct our Shel-
terbelt wind exposure metric, temperature and precipitation data for our climate outcomes,
and agricultural census data for our economic outcomes. In our main analysis, we focus on
the period from 1930 to 1965.10 Our results are robust to using different start and end years.
10 We start in 1930 due to concerns about data quality and availability before that time (Knappenberger

et al. 2001; Kunkel et al. 2007). We end in 1965 to limit the overlap with other agricultural changes,
including the expansion of irrigation and urbanization, which could be influenced by tree planting and
could influence the climate themselves.

8



Shelterbelt data: We digitize maps of “areas of concentrated Shelterbelt planting” from
Read (1958) and overlay them with county boundaries. This is our best available source of
data contemporaneous with the tree-planting program, as there are no official statistics on
the area of trees planted in each county. We classify a county as a Shelterbelt county if over
5% of its total area is covered by this concentrated planting (the 5% cutoff corresponds to
the 20th percentile among counties with non-zero tree planting). Figure 1 shows the location
of the concentrated Shelterbelt planting areas.

We validate our Shelterbelt measure with an alternative source of data. Snow (2019) digitized
the actual Shelterbelt plantings that survived several years to decades after planting, from
the United States Geological Survey (USGS) Topographic Map Quadrangles.11 We calculate
each county’s area covered by the Shelterbelt from her digitized shapefiles to compare with
our main measure. Appendix Figure S10 plots the two measures side-by-side and shows the
consistency in geographic coverage. The correlation is high at 0.86.

Wind data: Wind is an essential driver of atmospheric transport and regional climate
change in relation to afforestation. Trees usually release water into the atmosphere through
evapotranspiration. This atmospheric water vapor then travels with wind, increasing pre-
cipitation in areas downwind from the tree planting. We therefore construct a measure of
counties’ exposure to winds from the Shelterbelt to determine which counties are most likely
to have their climate influenced by the Shelterbelt project.

We use the North American Land Assimilation System (NLDAS-2) gridded wind data avail-
able from NASA. The NLDAS-2 combines multiple sources of observations, such as precip-
itation gauge data, satellite data, and radar precipitation measurements to produce clima-
tological estimates with a 1/8th-degree spatial resolution.12 Specifically, we use their hourly
u-wind (east-west dimension) and v-wind (north-south dimension) measures at 10 meters
above the surface level.

Using the NLDAS-2 data, we create a time-invariant approximate measure of how exposed
each county is to winds blowing from the Shelterbelt in the summer (wi). To do so, we
project an imaginary particle at a given speed and direction, and record all counties it crosses
over the course of 24 hours. We project these particles from each vertex of each Shelterbelt
11 USGS undertook the detailed mapping of the conterminous US through the production, by hand, of over

55,000 quadrangle maps covering about 64 square miles each, from 1947 to 1992. Snow 2019 identifies in
each map the vegetative areas with the characteristic shape and scale of Shelterbelt plantings (e.g., linear
features that run east/west or north/south) and extracts the corresponding polygons. She validates this
procedure by comparing the final digitized Shelterbelt acreage totals to official project totals by state.

12 NCEP North American Regional Reanalysis (NARR) data, used widely in environmental economics (e.g.,
Deryugina et al. 2019), is the main input for NLDAS-2 but available only 8-times a day and at a 32km
grid. We use NLDAS-2 for its hourly temporal frequency and 14km spatial resolution.

9



county, and repeat it for each summer hour (June through August) of each year between 1981
and 2010.13 We focus on summer months given the importance of climatological conditions
during that period for agricultural production. For each particle projected, we use the speed
and direction of the wind at that specific origin vertex and time.

We assign each particle a weight, to avoid a Shelterbelt county’s shape from influencing its
importance in the wind exposure measure, and to better reflect exposure to wind across
through trees planted under the Shelterbelt project. Each particle’s weight is therefore a
product of the inverse of the number of vertices in the original county, the share of the
county’s area covered by concentrated Shelterbelt planting, and a quality measure of the
shelterbelts in that area.14 We then count, for each county, how many (weighted) particles
originating from Shelterbelt counties crossed it during the projections. Finally, we rescale
the metric by dividing it by its maximum value. Figure 2 illustrates the construction of
the wind metric and shows the resulting wind exposure measure. Additional information
about its construction is provided in Appendix S.2.1. The resulting wind exposure metric
wi ∈ [0, 1] is a time-invariant approximate measure of how exposed a county i is to winds
blowing through all the trees planted under the Shelterbelt project.

Temperature and precipitation data: We construct a county-by-year panel of precipi-
tation and temperature based on daily weather station data, using a methodology inspired
by Schlenker and Roberts (2006). We start from the Global Historical Climatology Network
daily (GHCNd) dataset provided by the US National Oceanographic and Atmospheric Ad-
ministration (NOAA). We create a balanced panel of stations reporting between 1930 and
1965 to ensure that changes in the measured climate are not driven by changes in the under-
lying set of measuring stations. We spatially interpolate the station data to obtain a gridded
dataset at a 0.1 degree resolution, and average the resulting measures at the county-by-day
level. Finally, we compute the average daily precipitation, average daily maximum tempera-
ture, average daily minimum temperature, and total number of daily degree days at various
thresholds for each month. To aggregate this county-by-month dataset to county-by-year, we
take the average of these measures over the summer months (June through August). Details
on the construction of this dataset are available in Appendix S.3.

We consider degree days as a climatological outcome, since they have been shown to be
13 High-resolution wind data is only available starting in 1979. Section 4.2 provides evidence that using

post-treatment period wind data to measure exposure does not bias our estimates.
14 In addition to the maps, Read 1958 provides the proportion of shelterbelts in various conditions by

north/south of each state (e.g., northern part of North Dakota, southern part of North Dakota), based on
surveys of surviving shelterbelts. We use the share of shelterbelts in excellent or good quality in each area
as quality measure.
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a relevant measure of temperature when studying impacts on crops or physiology, often
performing better than maximum or mean temperature. Degree days have been widely
used in economics following work by Schlenker and Roberts (2006; 2009), who demonstrated
that yields increase gradually with temperature up to a critical threshold, and decrease
sharply with any further temperature increase. For corn, our main crop of interest, the
critical threshold is 29°C. We therefore include 29°C degree days as one of our main climate
outcome variables.

Standard gridded weather datasets with historical coverage, such as NOAA’s NClimDiv and
PRISM, do not include degree days. They provide data at the monthly level, while daily
data is necessary to compute degree days manually. These limitations led us to construct our
main weather dataset directly from the raw daily station data. Still, we verify the robustness
of our results on precipitation and mean and maximum temperature to using the standard
NClimDiv dataset, and find them to be robust.

Economic data: We focus on agriculture, the most important sector in the US Midwest
during our study period. We use agricultural censuses, conducted roughly every five years
by the US Department of Agriculture and digitized by Haines et al. (2018). We prefer using
agricultural census data over the USDA’s annual surveys because of their spatial coverage.
As shown in Appendix Figure S17, only a subset of states and counties, primarily in the
northern US, were surveyed prior to 1940. Thus, we would lack baseline data for all other
areas if we did not use the census data.

4 Empirical approach

Our empirical analysis exploits the timing and geographic location of tree-planting under
the Shelterbelt project, together with prevailing wind patterns. In a first step, we seek to
test whether the Shelterbelt project changed the climate—including in areas downwind from
where trees were planted, but not directly afforested themselves. In a second step, we ask
whether this policy-induced change in the climate influenced agricultural development in the
region, through direct and adaptation channels.

We use the same empirical strategy for the two steps of the analysis. Given the clear tem-
poral and geographic boundaries of the Shelterbelt program, our primary analysis relies
on a difference-in-differences framework: comparing the change in climate and economic
outcomes–before and after the program–across counties more or less exposed to winds blow-
ing from the Shelterbelt. Our preferred specification augments the classic difference-in-
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differences with a set of controls, in order to satisfy the causal identification requirements of
our approach. Ex-post, we find our main results to be qualitatively similar whether we use
controls, subsets of our controls only, or no controls at all in our specification.

We explicitly address a number of potential confounds, and find our results to be robust
to these potential threats. Specifically, we address the timing of the tree-planting effects,
the strategic choice of tree-planting location, the correlation of wind patterns with spatially
differentiated climate trends, the Dust Bowl and mean-reversion, irrigation, spatial general
equilibrium effects, and the potential endogeneity of wind patterns.

Below, we provide more details on our preferred empirical specification (4.1) and approaches
to address its main potential threats (4.2). We then present our results on the climate impacts
of the Shelterbelt (5.1) and its economic consequences (5.2). Finally, we demonstrate that
these results are valid and robust (5.3).

4.1 Main empirical strategy

Our main empirical strategy is to use a difference-in-differences model, with a continuous
treatment measure:

yit = β(wi × Pt) + γ(Xi × Yt) + δst + νi + ϵit (1)

where yit is the outcome of interest at the county-year level, wi is the wind exposure measure
(wi ∈ [0, 1]) described in Section 3, and Pt is an indicator variable equal to one for years
after 1942.15 Xi is a vector of controls, described below, interacted with year fixed effects
Yt. We also include county νi and state-by-year δst fixed effects. Using fixed effects at the
state-by-year level, instead of year as in classic TWFE specifications, allows us to ensure
that potentially differential historical trends in climate or agricultural development across
states that could correlate with wind exposure would not bias our results.

Our coefficient of interest is β, which measures the change in outcomes post-1942 induced
by a unit increase in wind exposure (w). This unit increase corresponds to moving from
having no exposure to winds coming from the Shelterbelt to being the county with the most
15 The Shelterbelt project was conducted from 1935 to 1942. Implementation started slowly, with most

trees planted in the final years of the project. (See Appendix Figure S11 for the timing.) We can expect
the impact of tree planting to increase over time, as trees grow. We therefore make the conservative
choice of using 1943 as the first year of the treatment period. If treatment effects happened earlier, our
estimation would underestimate the true effect. We also implement a long differences strategy to side-step
this uncertainty about the exact start of the treatment.

12



exposure. To aid interpretability, we provide in our tables or figures the difference in wind
exposure between the 25th and 75th percentile of that measure among our sample counties.

The effects we identify when estimating β are equilibrium effects. For instance, it is possible
that planting trees affects the downwind climate, which in turn induces people to change
their land use in these downwind areas. This land use change can in itself have a local
effect on the climate. This does not threaten the internal validity of our approach: we only
need to interpret the estimated coefficients as the resulting equilibrium effects of large-scale
tree-planting in a given area.

We do not have a staggered treatment: the post-treatment period is defined to be the same
for all units. However, our use of a continuous (rather than binary) treatment variable wi

requires a “strong parallel trends assumption” to hold for causal identification (Callaway
et al. 2021). In our setting, this assumption is that the change in outcomes between the
baseline and post-treatment periods would be the same, on average, for the counties with
wind exposure wd and for all other counties, had they also had a wind exposure level of wd.

The identification assumption is satisfied if (a) counties with different levels of wind exposure
would have had the same trends in climate and agricultural outcomes absent the Shelterbelt
tree planting, and (b) counties with different levels of wind exposure have similar baseline
levels of climate and agricultural outcomes. Requirement (a) corresponds to the classic par-
allel trends assumption in binary difference-in-differences. Adding (b) is required for those
outcomes where the effects of being exposed to winds blowing through the Shelterbelt vary
with the baseline levels of the outcome. For instance, the relationship between temperature
and crop yields is known to be highly non-linear, so that the effect on agricultural produc-
tivity of a given level of Shelterbelt wind exposure (inducing a given change in the climate)
would likely be different for counties with different baseline climates. To satisfy the causal
identification assumption, we thus need counties with different levels of wind exposure to
have similar baseline levels of crop yields.

While we cannot directly test for requirement (a), we can provide suggestive evidence on
baseline trends. Figure 3 classifies counties into above- and below-median values of Shelter-
belt wind exposure, and plots the average values of the climate and agricultural variables
for each group and each year. For improved visibility, given the high year-to-year variability
of rainfall and temperature, we show three-year moving averages for these variables. In the
baseline period (up to 1942), the two groups of counties exhibit parallel trends.

In Table 1, we provide evidence that requirement (b) holds once we control for county
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geospatial and topographic characteristics, as well as baseline erosion and irrigation levels.16

We therefore include these variables in the vector of controls Xi. We interact these controls
with year fixed effects, as they would otherwise be collinear with the county fixed effects. In
doing so, we flexibly allow counties with different baseline characteristics to have different
changes in outcomes over time without violating our strong parallel trends assumption.

Ex-post, we find that the choice of controls does not qualitatively influence our main results:
they are robust to using all controls, no controls at all, or either one of the four sets of controls
only (Figures 7 and 8, Panel A). Likewise, using year fixed effects rather than state-by-year
fixed effects produces similar results (Figures 7 and 8, Panel B).

4.2 Potential threats to identification

We now present the main threats to the internal validity of our empirical strategy, along
with how we address these threats.

Timing of the effects. In the difference-in-differences specification, we define Pt as an
indicator variable equal to one for years after 1942. However, it is ex-ante unclear when
trees planted under the Shelterbelt program will start influencing the climate and agricultural
development. On the one hand, tree planting started as early as 1935, so some effects may
also start then. On the other hand, trees need time to grow, and evapotranspiration is a
function of tree biomass, so the effects of tree planting may only start materializing after
several years. In both cases, this uncertainty around the specific treatment start time would
bias our estimated effects towards 0, relative to the true long-term effects of the program.

To alleviate this potential concern, we implement a long differences strategy and estimate:

∆yi = βLDwi + γLDXi + ψLD
s + ∆ϵi (2)

where ∆yi is the change in some outcome y in county i between two periods. We take
averages of each outcome y over 1930-1935 and 1960-1965 and difference these averages to
arrive at ∆yi. As before, wi is the wind exposure measure that approximates exposure to
summer winds from the afforested Shelterbelt counties. We also include state fixed effects,
16 For geospatial characteristics, we use a latitude-longitude grid quartile (with indicators for being in each

grid cell), an indicator for being a Shelterbelt county, an indicator for having above-median distance to
the nearest Shelterbelt county, and county size. For topographic characteristics, we use elevation and
ruggedness. For baseline erosion, we use indicators for experiencing medium or high erosion levels during
the Dust Bowl (from Hornbeck 2012). For baseline irrigation, we use the share of county overlapping with
the Ogallala aquifer as proxy for irrigation potential, and the share of county actually irrigated in the
pre-period 1935.
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ψs, to control for unobserved state-level trends, as well as the same county-level controls
(Xi) as in our main specification (Equation 1).

Strategic choice of tree-planting location. A second threat to identification stems from
the potential strategic behavior of Shelterbelt participants. If they took into account the
program’s potential climate spillovers when deciding where to plant trees, then our strong
parallel trends assumption would be violated: trees might have been planted upwind from
areas expected to have some specific future climate or economics trends. Note that this
would bias our point estimates away from zero only if the trees were strategically planted
upwind from areas expected to already witness a relative improvement in their climatic
growing conditions.

We address this potential concern with an instrumental variable strategy. Similar to Li
(2021), we use the planned Shelterbelt planting zone–an approximately 100-mile wide strip
of land between 100°W and 98°W–which is shown in the gray shaded area in Figure S9.
The choice of this planting zone was unrelated to any potential impacts on downwind areas.
The western border of the planned area was determined by the 18-inch precipitation line,
since it was determined by foresters that trees planted in areas further west, where rainfall is
lower, would likely not survive. Somewhat arbitrarily, the eastern border was drawn exactly
100-miles to the east of the western border.17

We treat all counties that overlap with the planned area as the hypothetical Shelterbelt.
We then reproduce the wind exposure measure construction steps described in Section 3,
except we replace Shelterbelt counties with the planned counties. We use this planned wind
exposure measure (wp

i ) as an instrument for the continuous treatment variable (wi) in our
difference-in-differences model. Figure S19 shows the wind exposure instrument next to the
actual wind exposure measure. The instrument is strong, with a F-stat of 91.7 (Appendix
Table S7, Col 6).

We estimate a two-stage least squares (2SLS) regression, where the first stage is:

wi = ξ1w
p
i + θXi + ϕIV

s + ei (3)

where wi is the actual wind exposure measure for each county, wp
i is the planned wind

exposure measure for each county, Xi is the set of time-invariant controls included in our
main specification, and ϕs is state fixed effects. The model for the second-stage estimation
17 Unfortunately, there is no clear discontinuity in the likelihood of Shelterbelt tree planting around the

eastern border, so we cannot use a spatial discontinuity design.
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is then:

yi = βIV (wi × Pt) + γIV (Xi × Yt) + δIV
st + νIV

i + ϵit (4)

where wi is instrumented by wp
i , and all other variables are as defined in Equation 1.

Spatially-differential climate trends. It is well established that oceanic oscillations
influence the regional climate over the course of years and decades. The most prominent is
the El Niño-Southern Oscillation (ENSO), in which warming in the Pacific Ocean produces
periodic climate shifts that differentially affect regions across the globe (Zebiak and Cane
1987). Likewise, global warming differentially affects regions across the US. Our estimates
of climate impacts downwind from the Shelterbelt could be biased if the spatial patterns of
wind exposure happened to be correlated with spatially differential climate trends.

The set of controls in our main specification (Equation 1) is designed to alleviate these
concerns. We create a spatial grid based on latitude and longitude quartiles across our
sample region, with each resulting grid cell having an area of 350km2, and include indicator
variables for being in a grid cell, interacted with year fixed effects. Likewise, we include
state-by-year fixed effects. This specification allows us to compare counties that are spatially
close, hence unlikely to be exposed to differential climate trends absent the Shelterbelt tree
planting, but that face differential wind exposure—thereby addressing the potential concern.
As we expect with this approach, we find that counties with different levels of wind exposure
have on average similar baseline climates (Table 1). Note that our main results hold without
these very granular spatial fixed effects.

Dust Bowl and mean reversion. The Shelterbelt project was conceived and implemented
in response to the Dust Bowl—a major climatic episode that spanned much of the 1930s.18

One might wonder, consequently, whether a reversion to non-shock conditions might have
occurred around the time of tree planting. This would bias our estimates if a change in the
climate in the Shelterbelt area would affect the climate downwind, even absent trees being
planted (for instance, because of increased water vapor in the atmosphere). We address this
potential concern in several ways.

First, the set of controls in our main specification includes Dust Bowl measures of erosion
levels from Hornbeck 2012, which can be taken as proxy for the local severity of the Dust
Bowl episode. As such, we identify the downwind effects from the Shelterbelt tree planting
18 Interestingly, climate scientists argue that the Dust Bowl was caused by a combination of oceanic anomalies

(which are exogenous to human activities in the US Midwest) and of local human-induced land degradation
(Cook et al. 2009).
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by comparing counties with similar Dust Bowl exposure. More broadly, given the balance
achieved across counties once we include our main set of controls, our effects are identified by
comparing counties with similar climates during our pre-period 1930-1942, which overlaps
with the Dust Bowl.

Second, we confirm that the Dust Bowl (or other differential trends) is unlikely to bias
the validity of our results, by using an alternative strategy to compare counties with similar
baseline trends. Instead of including controls in our difference-in-differences specification, we
implement a synthetic difference-in-differences specification: we compare the set of counties
with above-median wind exposure to a composite set of the counties with below-median wind
exposure, weighted such that the two groups have similar baseline trends, on average.19 Such
synthetic methods require a sufficiently long time period to match the baseline trends, and
therefore require us to expand our study period to start in 1910.20 We note that our main
sample does not start this early given concerns about the availability and quality of pre-1930
climate and agricultural data (Knappenberger et al. 2001; Kunkel et al. 2007).

Third, we can replicate our main difference-in-differences specification with different time
periods, to omit the Dust Bowl era. Within our preferred 1930-1965 timeframe, we can
drop the peak Dust Bowl years in terms of climate anomalies (1934, 1936, 1939). Once
we expand the study period prior to 1930, and despite the concerns with data quality, we
run our main analysis using Equation 1 with a start year of 1910. We also revise the long
difference approach in Equation 2 to compare 1925-1930 to 1960-1965, to address concerns
that the early 1930s were atypical. Similarly, we also compare 1930-1935 to 1950-1955 to
show that our results are not driven by any potentially atypical climate in the Great Plains
during 1960-1965.

The results from these exercises are presented in Section 5.3. They each indicate that our
results are neither driven nor biased by the Dust Bowl, or other spatially differentiated
climate trends.

Irrigation. If tree planting is spatially correlated with the expansion of irrigation, it could
be that our results are driven by changes in local climate from irrigation as opposed to
afforestation. Like trees, irrigation can increase local evapotranspiration, and thus influence
the local climate (e.g., Lobell et al. 2008; DeAngelis et al. 2010; Mueller et al. 2016; Braun
and Schlenker 2023). There are two potential concerns: first, that trees planted as part of
19 See Section S.10 for more details.
20 In order to replicate our analysis for 1910 through 1965, we repeat the construction of a county-by-year

panel of precipitation and temperature from weather stations with daily readings as detailed in Section
S.3, except using a balanced panel of stations reporting between 1910 and 1965 instead of 1930 and 1965.
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the Shelterbelt may have been directly irrigated, and second, that the Shelterbelt region and
downwind areas were more likely to be irrigated even if the trees themselves were not.

To the first concern, Barton (1936) describes precisely the cultivation of the trees planted
under the Shelterbelt project. He describes everything from the preparation of the ground to
enhance rainfall capture to post-planting weeding—without any mention of irrigation. This
contemporaneous account shows windbreaks were very unlikely to be irrigated, as water was
scarce and irrigation did not expand in earnest until the post-war period.

To address the second concern, we directly test whether irrigation was correlated with Shel-
terbelt planting or wind exposure. The results are illustrated in Figure S20. We find a
marginally significant negative correlation between pre-period irrigation, Shelterbelt tree
planting, and wind exposure. Focusing on irrigation expansion, we find no significant cor-
relation between irrigation in the post-treatment period and either Shelterbelt tree-planting
or wind exposure. Given the baseline imbalance, we include pre-period irrigation in the
vector of controls Xi in our preferred specification (Equation 1) to ensure that our effects
are identified by comparing comparable counties.

We also directly test whether irrigation drives our results. To do this, we use the fact that
almost all of the increase in irrigation in the region was attributed to the Ogallala aquifer.
Therefore, we interact the wind exposure term in our main regression (Equation 1) with a
dummy variable set to 1 for counties within the Ogallala. We can test whether the effects are
concentrated in the counties within the Ogallala aquifer (which would indicate that irrigation
may be driving the results), or whether they are also present in counties outside the aquifer,
where irrigation did not develop.

Spatial general equilibrium. Our preferred empirical strategy compares the change of
the climate and agricultural outcomes over time between counties more or less exposed to
winds from the Shelterbelt. Our estimate could therefore capture spatial general equilibrium
effects. For instance, improved growing conditions due to high Shelterbelt wind exposure in
area A could lead an agent owning farms in areas A and B to reduce investment in B and to
allocate it to A, which would further increase yields in area A and reduce them in B. Our
estimate would then overestimate the aggregate effect of tree planting on overall agricultural
production.

We address this common issue with the interpretation of difference-in-differences estimates
by replicating our main analysis with binary treatment measures. Specifically, we use our
continuous wind exposure measure to classify counties into four mutually exclusive groups:

i) Shelterbelt counties, where the trees were actually planted
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ii) Downwind neighbor counties, with centroids within 200km of Shelterbelt counties and
above median wind exposure from afforested areas21

iii) Other neighbor counties, with centroids within 200km of Shelterbelt counties and below
median wind exposure from afforested areas

iv) Pure control counties, with centroids 200-300km away from Shelterbelt counties

The resulting map of this classification can be viewed on the right panel of Figure 6. We
can then estimate the following difference-in-differences equation:

yit = β1(Si × Pt) + β2(Di × Pt) + β3(Ui × Pt) + γB(Xi × Yt) + δB
st + νB

i + ϵit (5)

where Si is an indicator for Shelterbelt counties, Di is an indicator for downwind neighbor
counties, and Ui is an indicator for other neighbor counties. As before, we add time-invariant
county-level controls interacted by year, as well as state-by-year and county fixed effects.22

Absent spatial general equilibrium effects, we should expect β3 to be small and close to zero,
although it may still be significantly different from zero if there are some effects from wind
exposure, since it includes every county with below-median wind exposure, not counties
with no wind exposure at all. Further, β2 − β3 identifies the effect of downwind exposure to
Shelterbelt tree planting, net of spatial general equilibrium effects.

Equation 5 can also be used for climate outcomes, to serve as a placebo check. Once again,
we expect β3 to be small and close to zero (or at least to be significantly smaller than β2),
since it identifies effects for counties with below-median wind exposure only.

We can also implement a version of the long differences approach from Equation 2 with the
binary treatment variables:

∆yi = βLD,1Si + βLD,2Di + βLD,3Ui + γLD,BXi + ψLD,B
s + ∆ϵi (6)

Endogeneity of wind patterns. Since spatially-consistent granular wind data only be-
came available in 1979, our wind exposure measure is not from the baseline period. Rather,
we derive it from long-term prevailing wind patterns computed over 1981-2010. Here, we
describe why our results are unlikely to be biased by this fact.
21 See Appendix Figure S16 for the distribution of wind exposure measures for neighbor counties.
22 We do not include the indicator for latitude-longitude quartile and above-median distance to the nearest

Shelterbelt county, as these terms are highly collinear with this categorical assignment of county treatment.
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Direct empirical evidence indicates that prevailing winds have remained stable throughout
our study period, and our classification of counties thus would likely be similar had baseline
data been available. First, we construct an alternative measure of wind exposure, based on
1938-1942 data from the available weather stations in our study area that monitored wind.23

We find a correlation of 0.92 between the two measures—indicating that wind exposure from
the Shelterbelt has been stable throughout the period (Figure S15). Going one step further,
we implement a long differences on the subsample of observations for which we have baseline
and endline wind data, using wind exposure as an outcome. We do not find evidence that
Shelterbelt tree planting had an effect on wind patterns.

Beyond this direct evidence, we can also test whether the pattern of our main results is con-
sistent with a bias induced by a misclassification of counties from the use of post-intervention
wind data. We do this using our discretized wind exposure measure and the associated spec-
ification given in Equation 5. If we assume that the Shelterbelt changes wind patterns in a
way that affects climate in neighboring counties, then a bias would occur if we classify as
downwind neighbor areas that now receive precipitation from the new wind regime but did
not otherwise. However, this new precipitation would be reallocated towards the downwind
neighbors from counties that we classify as other (non-downwind) neighbors: ones that used
to receive rain from the wind, but do not anymore due to the new wind pattern. If the
Shelterbelt was reallocating precipitation in such a way, we should observe an effect of the
intervention on the downwind counties of the same magnitude and opposite direction than
the effect on the other non-downwind counties. This implication is directly testable: we
do not find a negative treatment effect on other non-downwind neighbor counties, so it is
unlikely that there was any material reallocation of precipitation.

5 Results

We now present the impacts of Shelterbelt tree-planting on the climate, and the resulting
effects on agricultural development. We first show that large-scale tree planting increased
precipitation and reduced temperature in downwind areas (5.1). We then discuss the conse-
quences of this policy-induced change in the climate for agricultural development—including
productivity and farm consolidation—with a focus on climate adaptation (5.2). Finally, we
demonstrate the validity of our identification strategy and robustness of our results (5.3).
23 The construction procedure is described in Appendix S.2.2. This exercise cannot be conducted meaning-

fully before 1938 due to the sparsity of weather station data in the Great Plains region then.
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5.1 Climate impacts

Table 2 reports our climate results, estimated using our preferred difference-in-differences
specification. In Panel A, we consider all regions the program affected, whether directly
afforested under the Shelterbelt program or indirectly exposed through winds, for over two
decades after its implementation. We find that summer precipitation was 2.1mm higher in
counties in the 75th percentile of Shelterbelt wind exposure relative to counties in the 25th

percentile of wind exposure. This is equivalent to a 3.0% increase relative to the baseline
average monthly summer rainfall.24 We also find summer temperatures decreased: mean
and maximum temperatures were 0.7% and 0.9% lower in areas more exposed to winds
from afforested areas. Exposure to extreme temperatures that are harmful to crop yields
also decreased significantly: average monthly degree days above 29°C declined by 2.6 for an
increase in wind exposure from the 25th to the 75th percentile, equivalent to a 7.0% decrease
relative to the mean.

These results show that tree planting resulted in more favorable growing conditions region-
ally. They are consistent with increased evapotranspiration from the Shelterbelt trees. Evap-
orative demand is greatest during high temperatures, which means that the cooling influence
of evapotranspiration is expected to be most pronounced for periods of high temperatures
(Mueller et al. 2016). We find exactly this: the decreases in maximum temperatures and
degree days above 29°C are greater than the decrease in average temperatures.

Importantly, the effects of Shelterbelt tree planting on the climate downwind are not driven
by the afforested counties themselves. The climate effects are similar when focusing on the
counties that did not experience tree planting under the Shelterbelt program, and for which
agricultural census data is available (Table 2, Panel B).

5.2 Economic consequences

Our results so far show that Shelterbelt tree planting affected the regional climate via in-
creased summer rainfall and reduced summer temperatures. We now turn to the economic
consequences of this engineered change in the climate, which became more favorable to agri-
culture. To avoid confounding our estimates with any direct local effect of tree planting, we
focus on counties outside the Shelterbelt project area. There, trees were not planted, but
the climate did change in areas exposed to Shelterbelt winds.
24 To illustrate how such figures are computed using Table 2, Panel A, Col. 1: multiply the “75th-25th Perc.

Wind Exp” value (0.21) by the “Wind Exposure:Post 1942” value (0.995), which equals 0.21cm, or 2.1mm.
This 0.21cm increase is 3.0% of the sample mean precipitation (7.06cm).
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Corn production. We first focus on corn, the most important crop produced in the US
Midwest in volume and value. We find that Shelterbelt tree planting greatly increased the
production of corn in downwind areas. Table 3 contains the estimates from our preferred
difference-in-differences specification (Equation 1). Col. 1 suggests that corn production
was 30% higher for counties in the 75th percentile of wind exposure compared to counties in
the 25th percentile25. Qualitatively similar effects are estimated when using our alternative
difference-in-differences, instrumental variable, and long differences specifications, as shown
in Figure 4, Panel B.

An increase in corn production (i.e, bushels) can be driven by an increase in the area har-
vested of corn (i.e., acres), and by an increase in yield (production per area harvested, or
bushels per acre). The Shelterbelt tree planting led to a large and significant increase in the
area of corn harvested downwind, by 25% in counties in the 75th percentile of wind exposure
relative to counties in the 25th percentile (Table 3, Col. 2). Since the percentage difference
between the increase in production and in area harvested equals the increase in yields (as
illustrated by Figure 5), this implies that most of the corn production increase was driven by
the increase in area harvested. The increase in yields was more modest and only marginally
significant, at 5% (Table 3, Col. 3).

Climate adaptation. We find strong evidence that farmers downwind from the Shelterbelt
respond to the change in climate they experience, including by changing the type of crops
they decide to grow. The increase in crop harvested area could indeed come from a decision
by the farmers to reallocate land away from dryland crops or pasture to more relatively water-
intensive crops like corn (a climate adaptation channel), or mechanically from a reduction
in crop failure rates that would lead to an increase in the area harvested while holding the
area planted fixed (a physiological channel). Crop failure is driven by factors like weather,
insects, and diseases; we can therefore expect to respond to the changes in extreme weather
events driven by the Shelterbelt.26

Table 4, Panel A provides evidence that both climate adaptation and a physiological response
is driving the increase in corn harvested. The increase in the area of corn harvested (Col.
1) does come together with a significant decrease in crop failures by 6,600 acres per county
based on the 75th-25th percentile wind exposure difference (Col. 3). If farmers did not
adapt to the change in climate, and the entire effect on harvested area was driven by the
decrease in crop failures, then we should expect to see an increase in area harvested across all
crops—or, at least, no decrease. We therefore consider another major crop grown in the US
25 Approximated by multiplying the coefficient value (2.273) by the ‘75th-25th Perc. Wind Exp’ value (0.13).
26 See https://www.ers.usda.gov/data-products/major-land-uses/glossary/#cropfailure

22

https://www.ers.usda.gov/data-products/major-land-uses/glossary/#cropfailure


Midwest at the time of the Shelterbelt project: wheat. Contrary to corn, the area harvested
of wheat strongly decreased in areas downwind from the Shelterbelt following the change
in the climate by 6,200 acres per county (Col. 2). While farmers reallocated land between
crops, the overall area of cropland did not change (Col. 4).

The USDA agricultural census data we use in this paper provide information on the overall
extent of crop failures, but does not disaggregate it by type of crop. However, while much
more sparse in its geographical coverage during our time period (see Section S.4), the USDA
annual surveys do include information both on the area of corn planted and harvested. These
surveys confirm evidence for both climate adaptation and physiological responses: Appendix
Table S6 shows that the overall corn area planted by farmers increased significantly (adap-
tation channel) simultaneous with a decrease in corn failure (physiological channel).

This adaptation behavior following a change in the climate, away from wheat and towards
corn, is fully consistent with agronomic evidence. Precipitation has historically been a major
determinant of crop choice in the US: dryland wheat is the main crop grown in areas with
annual rainfall under 18 inches (Horner et al. 1957), while dryland corn generally requires
over 25 inches annually (Neild and Newman 1987). When precipitation increases due to
the influence of the Shelterbelt, we could therefore expect the share of cropland devoted
to more water-intensive crops, such as corn, to increase—which is the behavior we observe
empirically.

At first, our findings could appear at odds with prior work. Li (2021) studies the local
effect of the Shelterbelt project on agricultural outcomes, and finds a shift in production
towards pasture. However, the author includes annual weather variables such as rainfall and
precipitation as controls, which we show are actually outcomes of the Shelterbelt.

Agricultural development. The Shelterbelt program had important consequences for
the development of US agriculture. The post-War period saw intense concentration in the
agricultural sector, with smallholder farms being sold to form larger entities. Over our study
period, from 1930 to 1964, the total number of farms in our study region decreased from
819,000 to 468,000 (Appendix Figure S18). We argue that the improved growing conditions
induced by Shelterbelt tree planting reduced the extent of this farm consolidation, with
the number of small farms significantly increasing in areas more exposed to winds from the
Shelterbelt (Table 4, Panel B, Col. 1). This relative increase (i.e., a smaller decline in the
number of small farms) appears to at the expense of the mid-sized farms, whose number
decreased, albeit the estimate is not statistically significant (Col. 2). The point estimate
on the number of large farms is close to 0 (Col. 3). This reduced farm consolidation is
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associated with a lower overall value of the farms (land and buildings)—potentially through
reduced scope for economies of scale (Col. 4).

These climate-induced changes have implications for the use of key inputs: farms exposed
to winds from the Shelterbelt spend significantly less on hired machines, but significantly
more on fertilizers (Table 5, Cols. 2-3). Spending on hired labor is not significantly affected
(Table 5, Col. 1). These effects can be induced either by the new choice of crops (corn
typically requires more fertilizer than wheat, for instance), or the smaller size of the farms
(hiring machines may only be profitable for farms with fields of sufficient scale).

Overall, these results indicate a key role played by policy-induced climate change on agricul-
tural development, in areas not directly targeted by the tree-planting policy but downwind
from it.

5.3 Validity and robustness

The validity of our empirical approach could be threatened by the timing of the tree planting
effects, the strategic choice of tree planting location, the correlation of wind patterns with
spatially-differentiated climate trends, the Dust Bowl, irrigation, spatial general equilibrium
effects, and the potential endogeneity of wind patterns. We refer the reader to Section 4.2
for a detailed discussion of these potential confounds, and our strategies to address them.
Below, we introduce the results from these strategies and demonstrate that our empirical
approach is valid, and our results robust.

Timing of the effects; Strategic location decisions. Figure 4 presents the effects of
the Shelterbelt tree planting on the downwind climate (Panel A) and its economic conse-
quences (Panel B), showing together the estimates from our preferred difference-in-difference
approach (Equation 1), the long differences approach (Equation 2), and the instrumental
variable approach (Equation 4). For each of these approaches, we present the estimates
from the specification with and without the main set of baseline controls. We find similar
effects whether we use the difference-in-differences or long differences specifications, which
indicates that our results are robust to our choice of 1942 as the cutoff between the baseline
and post-treatment periods.

We also find that the instrumental variable estimates with controls, designed to address a
potential strategic choice of Shelterbelt program uptake and tree-planting location, are not
smaller than our preferred difference-in-differences estimates with controls. This indicates
that our preferred estimates are not driven by a strategic selection of tree planting location.
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If anything, the IV estimates are larger when considering climate outcomes, suggesting that
trees may have been selectively planted upwind from areas that would have suffered from
worsening climatic conditions absent the Shelterbelt project—which would bias the OLS
estimates towards zero.

Spatially-differential climate trends; Dust Bowl. In Section 4.2, we explain how our
set of controls helps ensure that spatially-differential climate trends or the Dust Bowl episode
do not bias our results, since identification comes from comparing counties in the same region
(unlikely to face differential large-scale, medium-term climate oscillations) and with similar
baseline exposure to the Dust Bowl. The resulting balance of the baseline climate by wind
exposure levels demonstrates the validity of this approach (Table 1).

To reinforce this argument, and present direct evidence that the Dust Bowl or climate trends
do not bias our results, Section 4.2 presents two different strategies that are based on a sample
with a start date expanded back to 1910. First, Appendix Table S11 presents the results
from the synthetic difference-in-differences analysis, implemented in periods 1910-1965 and
1919-1965. Once again, with this different approach to addressing potentially differential
trends, we find similar effects on downwind precipitation relative to our preferred difference-
in-differences. Temperature results are lower in magnitude, but also directionally consistent
with our main results.

Second, we verify the robustness of our main results by using alternative time periods that
omit the Dust Bowl era. We rerun our analyses separately by dropping the project im-
plementation years (1936 to 1942) and peak Dust Bowl years (1934, 1936, 1939) from our
baseline period. Appendix Tables S8 and S9 show the results are generally consistent with
our main findings. We also conduct long difference estimates (Equation 2) with alterna-
tive time windows. In Panel A of Appendix Table S12, we compare 1925-1930 (instead of
1930-1935) to 1960-1965 to address concerns that the early 1930s were still heavy drought
periods. In Panel B, we compare 1930-1935 to 1950-1955 (instead of 1960-1965) to compare
two general drought periods in the Great Plains in the pre- and post-planting periods. In
both cases, the estimates are qualitatively similar to our main long differences results.

Note that our main analysis starts in 1930 due to quality concerns for earlier data periods.
Nonetheless, replicating our main difference-in-differences analysis on the 1910-1965 sample
instead of our preferred 1930-1965 results produces similar results, though somewhat less
precise and lower in magnitude (Appendix Table S10).

Taken together, this consistent set of results derived from different empirical strategies indi-
cates that our results are not driven by spatially differential climate trends, or by the Dust
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Bowl episode.

Irrigation. In Section 4.2, we explain how our baseline controls ensure that a correlation
between irrigation and either tree planting or wind exposure do not bias our results. We
confirm that irrigation does not drive our main results in Appendix Tables S13 and S14,
in which we show that the downwind effects of the Shelterbelt tree planting on climate
and agricultural development are similar whether we consider counties outside the Ogallala
aquifer–where irrigation was far less likely to develop, and counties atop the aquifer—where
increase expanded rapidly in the post-War period.

Spatial general equilibrium. Figure 6 presents results from the difference-in-differences
strategy with a discretized wind exposure measure (Equation 5), which allows us to conduct
placebo checks on the climate outcomes and to test for spatial general equilibrium effects on
the economic outcomes—as introduced in Section 4.2. Consistent with our main results, we
find strong and significant effects of the Shelterbelt tree planting on neighboring counties with
above-median wind exposure. Further, we find little to no effects on neighboring counties
with below-median exposure, for both the climate and economic outcomes. This validates
the placebo check for the climate outcomes and indicates that potential spatial general
equilibrium effects have limited influence on our economic outcomes; it therefore need not
linger as a concern when interpreting our main treatment effect estimates.

Endogeneity of wind patterns. We have demonstrated in Section 4.2 that measuring
wind exposure in the post-treatment period does not bias our estimates, and refer the reader
to that section for further detail.

Robustness to choice of controls and fixed effects. The choice of controls does not
qualitatively influence our main results. Both our climate and economic estimates are robust
to using all controls, no controls at all, or either one of the four sets of controls only (Figures
7 and 8, Panel A). Likewise, using year fixed effects rather than state-by-year fixed effects
produces similar results (Figures 7 and 8, Panel B).

Spatial correlation. To address potential concerns about spatial correlation influencing
statistical inference, we implement Conley standard errors. Appendix Figure S21 shows that
even when using a conservative, large distance cutoff (1000km)–as well as a range of distance
cutoffs–our main estimates remain statistically significant with the exception of precipitation,
which gets noisy at higher cutoffs.

Hyperlocal analysis. Finally, we seek to directly validate the paper’s basic underlying
idea: that planting trees changes the local climate. We repeat our analysis at a hyperlocal
level, using individual weather station data and the shapefile of the exact location and area
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of surviving Shelterbelt trees (Snow 2019) to calculate the afforested area in the vicinity of
each station. The hyperlocal comparison essentially allows us to control for climate patterns
at broader spatial and temporal scales. We find that stations with more nearby afforestation
recorded higher precipitation and lower temperatures in the decades after the Shelterbelt
project (Appendix Table S15). These results, though likely partially mitigated by downwind
climate spillover effects that we ignore in this exercise, show that the change in climate due
to tree planting holds at the local level. Further discussion of these station-level results is
provided in Appendix S.9.

6 Conclusion and discussion

While tree planting is often positioned as an important tool in mitigating global climate
change, the impacts of massive tree-planting programs on local and regional climate—and
the resulting economic effects—are less often examined and discussed. In this paper, we
study the Great Plains Shelterbelt project, which planted over 220 million trees in the US
Midwest between 1935 and 1942, representing what is likely the largest afforestation initiative
in history up to that date.

We digitize historical maps of the Shelterbelt project to study the effects of tree planting
on precipitation and temperature and economic outcomes like yields. We use a difference-
in-differences approach that exploits wind patterns. We compare counties more exposed to
large-scale prevailing winds from afforested areas in the Shelterbelt to those less exposed
to these winds. We find that rainfall increased and temperature decreased with higher
exposure to winds from afforested areas. Our results are robust to various alternate empirical
methods, including instrumental variables, long differences, difference-in-differences with
binary treatment variables, and synthetic difference-in-differences approaches.

Are these climate effects realistic given the scale of the tree-planting effort? One way to test
this is to compare the precipitation effect we find in Table 2 to the theoretical transpiration
rate of trees. Our estimated precipitation coefficient is 0.995 cm per month for a unit
increase in wind exposure. Summing this over the three summer months that we analyze
from June to August (2.985 cm), multiplying it by the average wind exposure in the total
region studied (0.21), and multiplying by the total region studied (1,694,433km2), results
in an increase of 1cm of water per year spread across 1,062,155km2, which is equivalent to
7.9 million acre-feet of water (2.56 trillion gallons). In terms of theoretical transpiration,
the Shelterbelt program planted 220 million trees with an estimated survival rate of 61%
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(Read 1958). USGS estimates that a large oak tree can transpire 40,000 gallons per year.27

Proportionally allocating across the three summer months equates to 10,000 gallons per tree
per year. Thus, the surviving 134 million trees could produce 1.34 trillion gallons of water via
transpiration—which is roughly in line with the 2.56 trillion gallons attributable to increased
precipitation. While this exercise is coarse and simplistic28, the general alignment between
the program’s estimated and physical potential is reassuring.

After establishing the climate effects of the Shelterbelt project, we turn to study the economic
consequences of this engineered climate change. Our strategy enables us to disentangle the
effect of a changing climate on economic outcomes from other mechanisms. We find that
corn production increased in areas more exposed to winds from the Shelterbelt but not
directly afforested. This increase in corn production is mostly driven by an increase in the
area harvested of corn, rather than by corn yields. Such increase, in turn, can be explained
by a combination of reduced crop failures and climate adaptation: farmers switch from less
water-intensive crops like wheat to more water-intensive crops like corn.

The policy-induced improvement of the climate in areas downwind from the Shelterbelt has
important consequences for the agricultural development of the US Midwest: in a period
of intense farm consolidation and mechanization, we find that areas whose growing condi-
tions improved thanks to the Shelterbelt tree planting witnessed relatively less consolidation,
keeping more small farms. But these areas also mechanized less, evidenced by lower use of
farm machinery. As a result, farm values were 3.9% lower in terms of the overall value of
agricultural land and buildings, suggesting lower productivity and a potential ‘lock in’ into
agriculture during a period of structural transformation.

Our findings are particularly timely given the global enthusiasm for large-scale tree planting
as a means of mitigating climate change—especially in light of estimates that such activities
could potentially reduce atmospheric CO2 levels by 25% (Bastin et al. 2019). Tree planting is
a major part of nearly all proposed pathways to ‘net zero’ emissions, with estimated capital
requirements on the scale of hundreds of billions of dollars. The excitement around tree
planting is further evidenced by the increasing number of national forestry initiatives used
by countries to meet their mitigation targets under the Paris Agreement.29

27 https://www.usgs.gov/special-topics/water-science-school/science/evapotranspiration-and-water-cycle
28 This back-of-the-envelope calculation omits many important factors, including direct evaporation from the

soil, interactions with cropland, and differential transpiration rates across tree species, baseline climate,
and temporally across the growing season.

29 Recently national initiatives include Pakistan’s 10 Billion Trees Tsunami (2018), India’s Tree-planting
pledges (2017), Mexico’s Sowing Life Program (2019), Kazakhstan’s Two Billion Tree Project (2020),
Turkey’s Breath for the Future (2021), Mongolia’s One Billion Tree Project (2021), and WEF’s One
Trillion Trees (2020).

28
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There are good reasons for this enthusiasm. Tree planting is a ‘simple technology’ enjoying
high levels of public approval and public participation. Prior to concerns about climate
change, afforestation initiatives like the Great Plains Shelterbelt and China’s Three-North
Shelterbelt Program were implemented to stabilize soils and reduce erosion and dust storms.
Further, forestation efforts can reduce air pollution, particularly in urban settings (Xing
et al. 2023). Our paper adds another co-benefit to this list. The increased precipitation
and decreased extreme heat that we find during the growing season provide a major bene-
fit to most types of agricultural production—particularly in the major cropland regions of
the world that face hot summers and limited rainfall—conditions that are worsening under
climate change. So in this sense, tree planting can be both a tool for mitigation (by se-
questering carbon) and adaptation (by reducing the negative impact of global warming on
agriculture).30

However, large-scale afforestation is not without controversy, particularly regarding the enor-
mous amount of land required to reduce CO2 levels at a meaningful scale.31 Some critics
worry that massive afforestation efforts could come at the expense of cropland and thus food
security, while others are concerned about the dispossession of land from pastoralists and
other traditional groups. Another major concern relates to the timing of the CO2 reductions,
given that emission reductions are immediate while trees take decades to grow, as well as
their permanence in light of the potential for large-scale tree mortality from drought, invasive
species (e.g., mountain pine beetle), cyclones, and wildfires (Leverkus et al. 2022).

Many of these very real concerns can be addressed through the careful design of afforestation
programs. It is important to note that not all tree-planting initiatives are equal and that
their outcomes and co-benefits will be a function of the land selected, the tree species in-
cluded, their ongoing management over time, and community engagement. In China, there
is evidence of farmers cutting down native trees and replacing them with monocultural plan-
tations (Hua et al. 2018). The program we study, the Great Plains Shelterbelt, was unique
in that tree planting occurred in concentrated areas and windbreaks. Over 30 species of
trees and shrubs were selected—tall and short trees, fast and slow growing trees, hardwoods,
30 An active literature in economics focuses on the drivers and consequences of deforestation, especially in the

tropics (Burgess et al. 2012; Jayachandran et al. 2017; Burgess et al. 2019; Balboni et al. 2021; Araujo
et al. 2022). A forthcoming review is provided by Balboni et al., n.d. Our study focuses on tree planting,
but the benefits we identify can also represent costs of deforestation. By illustrating the challenges to
maintain the current tree cover, this evidence base can help guide the design of afforestation programs.

31 One estimate of the land required for afforestation to achieve a ‘net zero’ transition is 160 million hectares
by 2030–larger than France, Spain, and Germany combined (McKinsey Global Institute 2022). Another
report estimated an even larger figure of 1.2 billion hectares to achieve the carbon sequestration from
national climate pledges under the Paris Agreement—an area equivalent to all current global cropland
(Dooley et al. 2022).
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and conifers—most of which were native and thus locally adapted (Read 1958) to ensure
species diversity and ecological resilience in a way that mimicked naturally-occurring forests.
Clearly, a tree planting program involving monocultures or non-native species could produce
outcomes different than what we find—as well as different capital costs.

Relatedly, another valid question concerns the external validity of our results and the extent
that the Great Plains is similar to other potential tree planting regions of the world. In terms
of economic status, we first note that many countries today are still highly dependent on
agriculture, like the US Midwest was in the 1940s.32 In terms of agronomic conditions, the
Great Plains Shelterbelt occurred on mollisol soils, which are common throughout rainfall-
limited historic grasslands. As shown in Appendix Figure S13, these soils are also present in
the major crop growing regions of China, Russia, Kazakhstan, Ukraine, Turkey, Argentina,
Uruguay, Mexico, and Canada—many of the same countries which have proposed large-scale
tree planting programs. Thus it is reasonable to think that similar climate and yield effects
from tree planting could occur outside the Great Plains context.

To conclude, we find that the Great Plains Shelterbelt altered the climate and growing
conditions of a meaningfully large area—a region twice the size of California—over the
course of several decades, producing important economic consequences. Our results show
that human actions can alter local and regional climates through land use. In addition to
the implications for tree planting initiatives and climate policy described above, our paper
highlights the endogeneity risk in using spatial variation in climate trends to assess local
climate change impacts, and the potential bias it can imbue on climate change damage
estimates. Future work should investigate how drivers of climate spillovers can be used as
instruments for identifying the effect of climate change on economic outcomes.

32 Both Mexico and China, for example, have a current GDP per capita and share of the population employed
in agriculture similar to the US in 1940 (Appendix Figure S12).
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7 Figures

Figure 1: Shelterbelt measure

Notes: Figure shows intensive tree planting area (% of county area) based on digitized maps from Read
(1958). We calculate the percentage of each county covered by “areas of concentrated Shelterbelt planting”.
Throughout the paper, we refer to counties with at least 5% tree proportion as Shelterbelt counties.
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Figure 2: Shelterbelt wind exposure measure

Notes: Figures illustrate the construction of our Shelterbelt wind exposure measure. Counties with green
borders are Shelterbelt counties. Purple shading shows continuous wind exposure measure. The left panel
shows details of construction for three Shelterbelt counties (Meade, Clark, and Ford, in Kansas). Arrows
represent the direction and magnitude of prevailing winds for a given day and hour. Paths of imaginary
particles projected from each county’s vertices following the wind are shown as dotted lines. A path going
through a given county means a higher Shelterbelt wind exposure for that county. Aggregating these paths
over all counties and summer hours yields our continuous measure of wind exposure. More details on the
variable’s construction are provided in Appendix S.2.1. The right panel shows the final continuous wind
exposure measure for all counties in the sample.
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Figure 3: Trends in outcomes for low and high wind exposure counties

Panel A: Climate outcomes

Panel B: Economic consequences

Notes: Figures plot climate and economic variables over the sample period 1930-1965, separately for counties
with above-median and below-median wind exposure. The variables are residualized, removing county FE
and time-invariant controls interacted by year, including county-level geospatial and topographic character-
istics, baseline erosion, and baseline irrigation. Panel A shows summer precipitation, mean and maximum
summer temperature, and 29C summer degree days. 3-year rolling averages are reported due to high vari-
ation in annual weather outcomes. Panel B shows log corn production and area harvested. Our baseline
period encompasses the period before the project started (1930-1935, gray-shaded) and the tree planting
years (1936-1942, green-shaded).
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Figure 4: Climate and economic results summary

Panel A: Climate outcomes
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Panel B: Economic consequences

Notes: Figures plot coefficient estimates and 95% (thin line) and 90% (thick line) confidence intervals across
three different models: two-way fixed effects (TWFE) (Equation 1), instrumental variables TWFE (Equation
4), and long differences (LD) (Equation 2), each with and without controls. The main independent variable
is wind exposure (wi), which measures approximate exposure to winds from afforested areas, interacted by
a post-treatment dummy for the TWFE models. “75th-25th Perc. Wind Exp” shows the difference between
the 75th and 25th percentile of the continuous wind exposure measure. Time-invariant controls include the
county’s geospatial and topographic characteristics, baseline erosion, and baseline irrigation. County and
state-by-year (or state, for LD) FE is included. In Panel A, dependent variables are summer precipitation,
mean and maximum temperature, and 29C degree days (June - August averages). In Panel B, dependent
variables are log corn production and area, crop failure in acres, and number of farms with a size below 100
acres.
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Figure 5: Effects on corn production, area, and yield

Notes: Figure shows results from estimating Equation 1, for log corn production and area (left panel) and
log corn yields (right panel) for 479 counties, with centroids within 300km of the centroids of Shelterbelt
counties, dropping directly afforested areas. The main independent variable is wind exposure (wi), which
measures approximate exposure to winds from afforested areas, interacted by a post-treatment dummy.
Time-invariant controls include the county’s geospatial and topographic characteristics, baseline erosion,
and baseline irrigation. County and state-by-year FE is included. The difference between log production
increase and log area increase is equal to the log yield increase. Coefficient estimates and 95% (thin line)
and 90% (thick line) confidence intervals are reported.
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Figure 6: Results using binary treatment instead of continuous wind exposure measure

Notes: Figure shows results from estimating the model with binary treatment variables instead of continuous
treatment variable. Based on the distance to the tree planting and summer wind exposure measure (wi)
from the Shelterbelts, we group counties within 300km of afforested areas into four categories. These include
afforested counties (Shelterbelt), non-afforested counties with above-median wind exposure, centroids within
200km of the centroid of the closest Shelterbelt county (Downwind Neighbor), non-afforested counties with
below-median wind exposure, centroids within 200km of the centroid of the closest Shelterbelt county (Other
Neighbor), and pure control counties with centroids between 200 and 300km of the centroid of the closest
Shelterbelt county. We use the Other Neighbor counties as a placebo check, as we expect limited climate
effects in areas with little wind exposure from tree planting. The right panel shows each county’s assigned
group. We estimate a difference-in-differences model (Equation 5) and a long differences model (Equation 6)
both with and without time-invariant controls (interacted by year for the difference-in-differences). Time-
invariant controls include the county’s geospatial and topographic characteristics, baseline erosion, and
baseline irrigation. County and state-by-year (or state, for LD) FE is included. The left panel then plots
coefficient estimates and 95% (thin line) and 90% (thick line) confidence intervals for summer precipitation,
mean and maximum temperature, 29C degree days (top), and log corn production and area and crop failure
measures (bottom).
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Figure 7: Climate results robustness

Panel A: Alternate controls

Panel B: Alternate fixed effects
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Notes: Figures plot coefficient estimates and 95% (thin line) and 90% (thick line) confidence intervals
for mean summer precipitation and mean summer temperatures. In Panel A, we show robustness across
five versions of estimating Equation 1 with various controls. First, we show our main results with all
controls. Next, we only include, in turn, geospatial controls, baseline irrigation controls, topographic controls,
and baseline erosion controls. Finally, we remove all controls. In Panel B, we show robustness across six
specifications (based on Equation 1) with various fixed effects. First, we show our main results with state-
by-year (and county) fixed effects, with and without controls. Next, we include only year (and county) fixed
effects. Finally, we include principal component quadrant by year fixed effects. To create these quadrants,
we perform principal component analysis using county-level data on each of our controls, as well as average
precipitation and temperature. We then create quintiles based on the main principal component.
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Figure 8: Corn production and area results robustness

Panel A: Alternate controls

Panel B: Alternate fixed effects

Notes: Figures plot coefficient estimates and 95% (thin line) and 90% (thick line) confidence intervals for
log corn production and area harvested. In Panel A, we show robustness to five specifications (based on
Equation 1) with various controls. First, we show our main results with all controls. Next, we include
only the county area irrigated in 1935, Dust Bowl erosion measures, crop suitability, and soil type controls.
Finally, we drop all controls. In Panel B, we do the same with six specifications with various fixed effects.
First, we show our main results with state-by-year (and county) fixed effects, with and without controls.
Next, we include only year (and county) fixed effects. Finally, we include principal component quadrant by
year fixed effects. To create these quadrants, we perform principal component analysis using county-level
geospatial and topographic characteristics, baseline erosion, baseline irrigation, average precipitation, and
maximum and minimum temperatures. We then create quintiles based on the main principal component.
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8 Tables
Table 1: Balance table

Outcomes Sample Mean Without Controls With Controls

Coef. P-Val. Coef. P-Val.
(1) (2) (3) (4) (5)

Panel A: Climate Outcomes, Monthly Average Jun-Aug
Precipitation (cm) 7.1 -1.212 <0.001 -0.366 0.110
Mean Temp (C) 24.5 -2.167 <0.001 -0.046 0.860
Max Temp (C) 32 -1.306 0.017 0.307 0.292
Degree Days (29C) 37.8 -7.1 0.069 1.957 0.321

Panel B: Agricultural Outcomes, Corn
Log Production (bushels) 11.6 -1.321 0.113 1.424 0.167
Log Area Harvested (acres) 9 -0.67 0.359 1.23 0.206
Log Yields (bushels per acre) 2.6 -0.651 0.001 0.195 0.341

Notes: Table provides summary statistics and shows the balance of outcomes by levels of wind exposure.
Sample is of the 678 counties with centroids within 300km of the centroids of Shelterbelt counties (Panel A),
and their subset of 479 counties having agricultural census data and excluding directly afforested counties
(Panel B). The outcomes are listed in the left side of the table. Column (1) reports their sample average
over the baseline period 1935-1942. Columns (2) and (3) report, respectively, the OLS point estimate and
associated p-value from the cross-sectional regression of the outcome on the county’s wind exposure measure.
Columns (4) and (5) also report the OLS point estimate and associated p-value when regressing the outcome
on the wind exposure measure, when adding controls to the regression. These controls are: indicators for
being a Shelterbelt county; for having above-median distance to the nearest Shelterbelt county; county size;
share of county overlapping with the Ogallala aquifer; share of county irrigated in 1935; indicators for having
medium or high Dust Bowl erosion levels; elevation; ruggedness; latitude and longitude (indicators for the
sample quartiles, and their interactions); and state fixed effects.
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Table 2: Impact of Great Plains Shelterbelt on Jun-Aug county climate, 1930 to 1965

Dependent variable:

Precipitation Mean Temp Max Temp Degree Days
(cm) (C) (C) (29C)

(1) (2) (3) (4)

Panel A: All Counties and Years
Wind Exposure:Post 1942 0.995∗∗∗ −0.817∗∗∗ −1.326∗∗∗ −12.557∗∗∗

(0.279) (0.099) (0.147) (1.492)
[0.000] [0.000] [0.000] [0.000]

Mean 7.06 24.48 31.97 37.82
Std.Dev. 2.82 2.82 2.94 23.37
75th-25th Perc. Wind Exp 0.21 0.21 0.21 0.21
Observations 24,408 24,408 24,408 24,408

Panel B: Non-Shelterbelt Counties Only, with Agricultural Census Available
Wind Exposure:Post 1942 1.161 −1.472∗∗∗ −2.295∗∗∗ −23.778∗∗∗

(0.921) (0.238) (0.326) (2.953)
[0.209] [0.000] [0.000] [0.000]

Mean 7.65 23.79 31.09 31.89
Std.Dev. 2.99 2.46 2.51 16.77
75th-25th Perc. Wind Exp 0.13 0.13 0.13 0.13
Observations 3,539 3,539 3,539 3,539

Notes: Table shows results for estimating Equation 1. Sample is of the 678 counties with centroids within
300km of the centroids of Shelterbelt counties (Panel A), and a subset of the 479 counties with agricultural
census data available and that were not directly afforested (Panel B). Dependent variables are the annual
average of each month’s average climate for June, July, and August. For clarity, for the ‘Mean’ row Panel
A: (1) precipitation of 7.06cm is the average monthly cumulative rainfall, averaged across June-August; (2)
mean temperature of 24.48C is the monthly average of daily mean temperatures, averaged across June-
August; (3) max temperature of 31.97C is the monthly average of daily maximum temperatures, averaged
across June-August; (4) degree days (29C) of 37.82 is the monthly sum of daily degree days exceeding 29C
(i.e., a 32C day would contribute 3 degree days to that month), averaged across June-August. The main
independent variable is wind exposure (wi), which measures approximate exposure to winds from afforested
areas, interacted by a post-treatment dummy. “75th-25th Perc Wind Exp” shows the difference between the
75th and 25th percentile of the continuous wind exposure measure in the sample. Time-invariant controls,
interacted by year, include county-level geospatial and topographic characteristics, baseline erosion, and
baseline irrigation. County and state-by-year FE is included. Standard errors are clustered at the county
level, shown in parentheses; p-values shown in brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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Table 3: Impact of Great Plains Shelterbelt on corn production, area harvested, and yields
using USDA 5-year agricultural census data, 1930 to 1964

Dependent variable:

Log Production Log Area Log Yields

(1) (2) (3)

Wind Exposure:Post 1942 2.273∗∗∗ 1.861∗∗∗ 0.412∗

(0.672) (0.657) (0.212)
[0.001] [0.005] [0.053]

75th-25th Perc. Wind Exp 0.13 0.13 0.13
Observations 3,539 3,539 3,539

Notes: Table shows results for estimating Equation 1 for 479 counties, with centroids within 300km of the
centroids of Shelterbelt counties, dropping directly afforested areas. Dependent variables are from USDA 5-
year agricultural censuses (8 censuses between 1930 and 1964) for log corn production in bushels (Col. 1), log
area of corn harvested in acres (Col. 2), and log corn yields (bushels per acre). The main independent variable
is wind exposure (wi), which measures approximate exposure to winds from afforested areas, interacted by
a post-treatment dummy. “75th-25th Perc Wind Exp” shows the difference between the 75th and 25th
percentile of the continuous wind exposure measure. Time-invariant controls, interacted by year, include
county-level geospatial and topographic characteristics, baseline erosion, and baseline irrigation. County
and state-by-year FE is included. Standard errors clustered at the county level are shown in parentheses;
p-values shown in brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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Table 4: Impact of Great Plains Shelterbelt on agricultural development, 1930 to 1964

(1) (2) (3) (4)

Panel A: Agricultural Output Dep. var.: Cropland area (1000s acres)

Corn Wheat Crop Total
Harvested Harvested Failures Cropland

Wind Exposure:Post 1942 36.741∗∗∗ −47.460∗∗∗ −50.698∗∗∗ −15.561
(8.293) (10.646) (17.361) (22.853)
[0.000] [0.000] [0.004] [0.497]

Panel B: Farm Consolidation Dep. var.: Number of Farms, by Farm Size Farms Value

< 100 acres 100-499 acres ≥ 500 acres (Log)

Wind Exposure:Post 1942 196.153∗∗ −60.303 −3.753 −0.300∗∗

(92.735) (114.545) (42.006) (0.125)
[0.035] [0.599] [0.929] [0.018]

75th-25th Perc. Wind Exp 0.13 0.13 0.13 0.13
Observations 3,539 3,539 3,539 3,539

Notes: Table shows results for estimating Equation 1 for 479 counties, with centroids within 300km of the
centroids of Shelterbelt counties, dropping directly afforested areas. Dependent variables are from USDA
5-year agricultural censuses (8 censuses between 1930 and 1964). The main independent variable is wind
exposure (wi), which measures approximate exposure to winds from afforested areas, interacted by a post-
treatment dummy. “75th-25th Perc Wind Exp” shows the difference between the 75th and 25th percentile of
the continuous wind exposure measure. “Farms Value” corresponds to the log of the total value of farmland
and buildings at the county-year level. Time-invariant controls, interacted by year, include county-level
geospatial and topographic characteristics, baseline erosion, and baseline irrigation. County and state-by-
year FE included. Standard errors are clustered at the county level shown in parentheses; p-values shown in
brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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Table 5: Impact of Great Plains Shelterbelt on input choices, 1930 to 1964

Dependent variable: Log Spending, on

Hired Labor Hired Machines Fertilizer
(1) (2) (3)

Wind Exposure:Post 1942 −0.204 −0.703∗∗∗ 3.081∗∗∗

(0.287) (0.263) (1.159)
[0.478] [0.008] [0.009]

75th-25th Perc. Wind Exp 0.13 0.13 0.13
Observations 2,283 2,283 2,283

Notes: Table shows results for estimating Equation 1 for 479 counties, with centroids within 300km of the
centroids of Shelterbelt counties, dropping directly afforested areas. Dependent variables are from USDA
5-year agricultural censuses (8 censuses between 1930 and 1964). The main independent variable is wind
exposure (wi), which measures approximate exposure to winds from afforested areas, interacted by a post-
treatment dummy. “75th-25th Perc Wind Exp” shows the difference between the 75th and 25th percentile
of the continuous wind exposure measure. Time-invariant controls, interacted by year, include county-level
geospatial and topographic characteristics, baseline erosion, and baseline irrigation. County and state-by-
year FE is included. Standard errors are clustered at the county level, shown in parentheses; p-values shown
in brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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S Supplementary Appendix - For Online Publication

This Appendix contains the following supplementary materials:

• Section S.1: Additional background and context

• Section S.2: Wind exposure construction details, including

– Section S.2.1: Downwind measure definition

– Section S.2.2: Wind interpolation for 1938-1942

– Section S.2.3: Discretized wind exposure details

• Section S.3: Climate data construction

• Section S.4: Agricultural census and survey data details

• Section S.5: Additional details of and results with instrumental variables approach

• Section S.6: Addressing differential climate trends and the Dust Bowl, including
robustness to

– Section S.6.1: Dropping Dust Bowl years from the analysis

– Section S.6.2: Using longer and alternative time periods for the analyses

• Section S.7: Addressing irrigation

• Section S.8: Addressing spatial correlation

• Section S.9: Hyperlocal, station-level analysis

• Section S.10: Synthetic difference-in-differences analyses
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S.1 Additional background and context

In this section, we present additional information on the history of the Great Plains Shel-
terbelt project. Figure S9 shows a map of concentrated Shelterbelt planting that we digitize
and use as our main measure of treatment. The resulting county-level measure (share of
area covered by concentrated tree planting) is shown in the left panel of Figure S10. We
also check the robustness of our results using an alternate measure of digitized Shelterbelt
shapefiles from Snow 2019, which is shown in the right panel of Figure S10. Figure S11
shows the approximate numbers of trees planted in each year of the program.

Figure S9: Shelterbelt planned area and realized concentrated planning

Notes: Map shows planned zone of Shelterbelt planning and areas of concentrated Shelterbelt planning
according to Read 1958. Our Shelterbelt definition is based on county areas covered by the areas of concen-
trated tree planting.
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Figure S10: Shelterbelt measures

Notes: Figure compares our main measure of Shelterbelt treatment from Read (1958) and the alternate
measure from Snow (2019) used for robustness checks. The two measures are similar (correlation 0.86).

Figure S11: Shelterbelt tree planting over time

Notes: Figure plots the number of trees planted in each year of the Shelterbelt project implementation.
Figures for 1940 and 1941 are estimates based on overall count of trees planted.
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Figures S12 and S13 offer contextual evidence supporting the external validity of our re-
sults and illustrate economic and agronomic parallels between the Great Plains and various
contemporary global contexts.

Figure S12: United States in 1940, compared to countries in 2018

Notes: GDP per capita from the Maddison Project Database (2018 and 1940). Share of employment in
agriculture from the US Census (1940, IPUMS) and the World Development Indicators (2018, WB).

Figure S13: Distribution of Mollisols

Notes: Soil map derived from USDA NRCS.
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S.2 Wind exposure construction details

S.2.1 Downwind county definition

In order to construct our time-invariant approximate measure of how exposed county i is
to winds from all Shelterbelt counties (wi ∈ [0, 1]), we take the following steps. Let i index
spillover counties, j index Shelterbelt counties and c index vertices of Shelterbelt counties.
Finally, let h index the hours over the summer (June through August) for years 1981 - 2010
(e.g., min(h) is on June 1st, 1981, while max(h) is on August 31st, 2010). As discussed in
the paper, we use hourly summer wind speed and direction for each Shelterbelt county for
years 1981 - 2010 as spatially consistent hourly data are unavailable before the 1970s.

For each hour, we then repeat the following steps. From each vertex, vjc, of each Shelterbelt
county j (with total vertices Vj), we project where a particle would travel if it was blown
by winds of the given direction and speed constantly for 1 day. For all unique outgoing-
incoming county pairs, let pijch = 1 indicate if the particle from vertex vjc of Shelterbelt
country j intersects spillover county i for hour h. For each spillover county i, sum up all the
particles originating from an outgoing county j and divide by the total number of vertices of
the outgoing county. We also multiply this measure by the area of concentrated Shelterbelt
planting in the outgoing county (sj) and the average quality of the trees planted (qj) coming
from Read (1958).

pijh =
∑

c pijch

Vj

× (sj × qj)

The resulting number, pijh, is the wind exposure from one county. Finally, sum up this mea-
sure from all Shelterbelt counties and all hours and normalize by dividing by the maximum
value.

wi =
∑

h

∑
j pijh

max ∑
h

∑
j pijh

The resulting value wi ∈ [0, 1] is the time-invariant approximate measure of exposure to
winds from the shelterbelt.

S.2.2 Wind interpolation for 1938-1942

We construct an alternative measure of wind exposure, based on data for 1938-1942. We
use NOAA’s Integrated Surface Dataset for hourly data. We first collect hourly wind data
from the weather stations with wind data. We then interpolate the hourly data to a 0.5
degree grid using nearest neighbor interpolation. Figure S14 shows what the data look like
before and after interpolation. We then take the same steps, described in Section S.2.1, in
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constructing an alternate wind exposure metric as with the 1981-2010 gridded wind data.

Appendix Figure S15 compares the two resulting downwind exposure metrics. Reassuringly,
the measures are very similar with a correlation of 0.92.

Figure S14: Wind interpolation example

Notes: Figure shows sparse 1938-1942 wind station data interpolation for a given hour. The left panel shows
wind direction and speeds for available stations in the US Midwest on 1940 June 1st, midnight to 1am. The
right panel shows the wind data interpolated to a 0.5 degree grid.
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Figure S15: Wind exposure measures

Notes: Maps show two alternate wind exposure metrics. Counties with green borders are treated Shelterbelt
counties while shading shows continuous wind exposure measure. The left panel shows our main wind expo-
sure measure based on 1981-2010 long-term average winds, while the right panel shows the same measure but
using interpolated 1938-1942 wind station data. Reassuringly, the two measures are very similar (correlation
0.92).
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S.2.3 Discretized wind exposure details

Figure S16 shows the construction of our discretized wind exposure categories based on our
continuous wind exposure measure. As detailed in Section 4.2, we use the binary difference-
in-difference analysis to address concerns regarding the interpretation of the continuous
difference-in-differences results. We classify counties into Shelterbelt counties, downwind
neighbor counties, other neighbor counties, and pure control counties. Figure S16 shows a
histogram of our continuous wind exposure measure and how we divide counties into the
above-median (downwind) and below-median (other control) groups.

Figure S16: Shelterbelt neighbor wind exposure

Notes: Figure shows histogram of the wind exposure measure for counties within 200km of afforested areas.
Counties with wind exposure above the median measure are classified as downwind neighbor counties, while
the rest are classified as other neighbors.
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S.3 Climate data construction

We build our main weather data from daily station data using a methodology inspired by
Schlenker and Roberts (2006). We use NOAA’s Global Historical Climatology Network
daily (GHCNd) data to create a balanced panel of stations with availability between 1930
and 1965. We take the following steps to construct our county-level daily data.

1. Start with precipitation and temperature stations from the GHCNd stations that are
available for 1930 through 1965 (2,001 and 1,445 precipitation and temperature sta-
tions, respectively).

2. Select a constant set of stations based on availability. Keep stations with less than
5% missing observations between 1930 and 1965 (1,099 and 750 precipitation and
temperature stations, respectively).

3. Fill in missing observations for this set of constant stations.

a. For each station, Si, find the 10 closest stations in the data.

b. For each of the 10 nearby stations, calculate the percentile of the daily precipita-
tion and maximum and minimum temperatures readings for each day, based on
the entire available distribution of weather measures at the appropriate station.

c. For each missing observation for station Si, calculate the average percentile read-
ing of the 10 closest stations (e.g., 71st percentile).

d. Then, fill in the missing observation using the corresponding value from the dis-
tribution of Si (e.g., if the 71st percentile corresponds to 20mm of precipitation
at station Si, the missing value will be filled in with 20mm).

4. Calculate degree days at each station.

5. Interpolate all variables to a 0.1 degree grid.

6. Average gridded values at the county level.
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S.4 Agricultural census and survey data details

Figure S17 illustrates the geographical coverage of USDA agricultural census (conducted
every approximately 5 years) and survey (conducted annually) data between 1930 and 1964.
We use agricultural census data in our main analysis, as it offers a more comprehensive
coverage of the region.

Figure S17: Agricultural census and survey data

Notes: Figure shows counties for which we have corn yield observations from the agricultural census and
surveys for every time period between 1930 and 1964.
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However, the survey data enables us to study differences between corn area planted and
harvested, and show that farmers adapted on the extensive margin by planting more corn in
areas more exposed to winds from the Shelterbelt (Table S6). Additionally, the data provides
a robustness check of the yield results (Col. 4 of Table S6).

Table S6: Impact of Great Plains Shelterbelt on Corn Acreage, 1930-1965 (USDA Annual
Surveys)

Dependent variable:

Corn Area (1000s acres) Log
Planted Harvested Failure Yields

(1) (2) (3) (4)

Panel A: No Controls
Wind Exposure:Post 1942 20.033∗∗ 27.082∗∗∗ −7.049∗∗ 0.729∗∗∗

(9.638) (7.709) (3.066) (0.168)
[0.040] [0.001] [0.023] [0.000]

Panel B: Controls
Wind Exposure:Post 1942 22.822∗∗ 26.946∗∗∗ −4.124 0.860∗∗∗

(9.549) (8.970) (4.241) (0.275)
[0.018] [0.004] [0.333] [0.003]

75th-25th Perc. Wind Exp 0.20 0.20 0.20 0.20
Observations 5,249 5,249 5,249 5,249

Notes: Table shows results for estimating Equation 1 for 181 counties (outside of the direct afforested areas)
with data in the USDA annual surveys. Corn area planted includes all types of corn; corn area harvested is
a sum of grain, silage, and forage corn; corn failure is calculated as the difference between the area planted
and harvested. Main independent variable is wind exposure (wi), which measures approximate exposure to
winds from afforested areas, interacted by a post-treatment dummy. “75th-25th Perc Wind Exp” shows the
difference between the 75th and 25th percentile of the continuous wind exposure measure. Panel A includes
no controls beyond county and state-by-year FE. Panel B adds time-invariant controls, interacted by year,
including county-level geospatial and topographic characteristics, baseline erosion, and baseline irrigation.
Standard errors clustered at the county level shown in parentheses; p-values shown in brackets (∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01).
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Figure S18: Farm count in sample counties from the USDA 5-year agricultural census data,
1930 to 1964

Notes: Figure shows the total farm count in counties for which we have observations from the agricultural
census for every time period between 1930 and 1964.
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S.5 Instrumental variables approach

This section shows additional details of our instrumental variable approach, presented in
Section 4.2, that addresses the potential threat to our main identification strategy from
possible strategic planting behavior of the decision-makers involved with the Shelterbelt
project. Similar to Li (2021), we use the zone of planned Shelterbelt planting as shown in
the gray shaded area in Figure S9.

Figure S19: Wind exposure and wind exposure instrument

Notes: Left panel shows the instrument for the continuous wind exposure measure constructed based on the
planned 100-mile Shelterbelt zone. Right panel shows the final continuous wind exposure measure based on
realized Shelterbelt planting. Dark green outlines show planned and realized Shelterbelt counties.

We treat all counties that overlap with the planned area as the hypothetical or planned
Shelterbelt. We then reproduce the wind exposure measure construction steps described in
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Section 3, except replace Shelterbelt counties with the planned counties. We use this planned
wind exposure measure (wp

i ) as an instrument for the continuous treatment variable (wi) in
our difference-in-differences model. Figure S19 shows the wind exposure instrument next to
the actual wind exposure measure. Our results are robust to this strategy (Table S7) and
the instrument is strong, with a F-stat of 91.7 (Table S7, Col. 6).

Table S7: Impact of Great Plains Shelterbelt on Jun-Aug county climate, 1930 to 1965

Dependent variable:

Precip. Mean Temp Max Temp Degree Days Wind
(cm) (C) (C) (29C) Exposure

(1) (2) (3) (4) (5)

Wind Exp.:Post 1942 3.871∗∗∗ -1.664∗∗∗ -2.177∗∗∗ -23.91∗∗∗

(0.6340) (0.2198) (0.2873) (3.125)
[0.000] [0.000] [0.000] [0.000]

Wind Exp. IV 0.486∗∗∗

(0.046)
[0.000]

Mean 8.39 23.68 30.87 28.8 -
Std.Dev. 3.49 3.04 3.17 22.46 -
75th-25th Perc. Wind Exp 0.21 0.21 0.21 0.21 -
Observations 24,408 24,408 24,408 24,408 678
F-Stat - - - - 91.7∗∗∗

Notes: Table shows results for estimating Equation 4 for 678 counties, with centroids within 300km of the
centroids of Shelterbelt counties. Dependent variables are June - August averages. Main independent variable
is wind exposure (wi), which measures approximate exposure to winds from afforested areas, interacted by
a post-treatment dummy. This variable is instrumented by the planned wind exposure measure, which
reconstructs the wind exposure measure based on the planned 100-mile wide Shelterbelt zone. First stage is
shown in Column (5). “75th-25th Perc Wind Exp” shows the difference between the 75th and 25th percentile
of the continuous wind exposure measure. Time-invariant controls, interacted by year, include county-level
geospatial and topographic characteristics, baseline erosion, and baseline irrigation. County and state-by-
year FE included. Standard errors clustered at the county level shown in parentheses; p-values shown in
brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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S.6 Differential climate trends and the Dust Bowl

This section presents our additional results reinforcing that the Dust Bowl or longer-time
climate trends do not bias our results.

S.6.1 Dropping Dust Bowl years

First, we verify the robustness of our main results to omitting the Dust Bowl era. We rerun
our analyses separately dropping the project implementation years (1936 to 1942) and peak
Dust Bowl years (1934, 1936, 1939) from our baseline period. Tables S8 and S9 show the
results are generally consistent with our main findings.

Table S8: Impact of Great Plains Shelterbelt on Jun-Aug county climate, 1930 to 1965
(Excluding 1936-1942)

Dependent variable:

Precipitation Mean Temp Max Temp Degree Days
(cm) (C) (C) (29C)

(1) (2) (3) (4)

Wind Exposure:Post 1942 0.841∗∗∗ −0.866∗∗∗ −1.370∗∗∗ −13.010∗∗∗

(0.291) (0.107) (0.153) (1.586)
[0.005] [0.000] [0.000] [0.000]

Mean 6.72 24.67 32.23 39.49
Std.Dev. 2.61 2.8 2.81 23.25
75th-25th Perc. Wind Exp 0.21 0.21 0.21 0.21
Observations 24,408 24,408 24,408 24,408

Notes: Table shows results for estimating Equation 1 for 678 counties, with centroids within 300km of the
centroids of Shelterbelt counties. Dependent variables are June - August averages. Main independent variable
is wind exposure (wi), which measures approximate exposure to winds from afforested areas, interacted by
a post-treatment dummy. “75th-25th Perc Wind Exp” shows the difference between the 75th and 25th
percentile of the continuous wind exposure measure. Time-invariant controls, interacted by year, include
county-level geospatial and topographic characteristics, baseline erosion, and baseline irrigation. County and
state-by-year FE included. Separate variable included (not shown) for Wind Exposure:Treat, where Treat
is set to 1 for 1936-1942. Mean and standard deviation of the outcome measured during the baseline period,
excluding 1936-42, are reported. Standard errors clustered at the county level shown in parentheses; p-values
shown in brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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Table S9: Impact of Great Plains Shelterbelt on Jun-Aug county climate, 1930 to 1965
(Excluding 1934, 1936, and 1939)

Dependent variable:

Precipitation Mean Temp Max Temp Degree Days
(cm) (C) (C) (29C)

(1) (2) (3) (4)

Wind Exposure:Post 1942 1.225∗∗∗ −0.840∗∗∗ −1.338∗∗∗ −13.232∗∗∗

(0.317) (0.093) (0.136) (1.324)
[0.000] [0.000] [0.000] [0.000]

Mean 7.58 24.16 31.49 32.95
Std.Dev. 2.64 2.6 2.63 18.1
75th-25th Perc. Wind Exp 0.21 0.21 0.21 0.21
Observations 24,408 24,408 24,408 24,408

Notes: Table shows results for estimating Equation 1 for 678 counties, with centroids within 300km of the
centroids of Shelterbelt counties. Dependent variables are June - August averages. Main independent variable
is wind exposure (wi), which measures approximate exposure to winds from afforested areas, interacted by
a post-treatment dummy. “75th-25th Perc Wind Exp” shows the difference between the 75th and 25th
percentile of the continuous wind exposure measure. Time-invariant controls, interacted by year, include
county-level geospatial and topographic characteristics, baseline erosion, and baseline irrigation. County and
state-by-year FE included. Separate variable included (not shown) for Wind Exposure:Peak, where Peak is
set to 1 for 1934, 1936, and 1939. Mean and standard deviation of the outcome measured during the baseline
period, excluding 1934, 1936, and 1939, are reported. Standard errors clustered at the county level shown
in parentheses; p-values shown in brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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S.6.2 Longer and alternative time periods

Next, we rerun our analyses over a longer time period, noting that our main analysis starts
in 1930 due to quality concerns for earlier data periods. Nevertheless, replicating our main
difference-in-differences analysis on the 1910-1965 sample instead of our preferred 1930-1965
results produces similar results, though somewhat less precise and lower in magnitude (Table
S10).

Table S10: Impact of Great Plains Shelterbelt on Jun-Aug county climate, 1910 to 1965

Dependent variable:

Precipitation Mean Temp Max Temp Degree Days
(cm) (C) (C) (29C)

(1) (2) (3) (4)

Wind Exposure:Post 1942 0.175 −0.346∗∗∗ −0.647∗∗∗ −5.571∗∗∗

(0.215) (0.068) (0.111) (0.919)
[0.416] [0.000] [0.000] [0.000]

Mean 7.55 23.77 31.17 31.77
Std.Dev. 2.92 3.1 3.18 22.76
75th-25th Perc. Wind Exp 0.21 0.21 0.21 0.21
Observations 37,968 37,968 37,968 37,968

Notes: Table shows results for estimating Equation 1 for 678 counties, with centroids within 300km of the
centroids of Shelterbelt counties. Dependent variables are June - August averages. Main independent variable
is wind exposure (wi), which measures approximate exposure to winds from afforested areas, interacted by
a post-treatment dummy. “75th-25th Perc Wind Exp” shows the difference between the 75th and 25th
percentile of the continuous wind exposure measure. Time-invariant controls, interacted by year, include
county-level geospatial and topographic characteristics, baseline erosion, and baseline irrigation. County
and state-by-year FE included. Standard errors clustered at the county level shown in parentheses; p-values
shown in brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).

To address potential violations to the parallel trends assumption when extending the start
date of our analysis back to 1910, we also replicate our synthetic difference-in-differences
analyses (detailed in Section S.10). Table S11 shows the results from the synthetic difference-
in-differences analysis, implemented on the periods 1910-1965 and 1919-1965. We find similar
effects on downwind precipitation than with our preferred difference-in-differences approach
with controls. Temperature results are lower in magnitude, but directionally consistent with
our main results too.

17



Table S11: Synthetic Difference-in-Differences: Impact of Great Plains Shelterbelt on Jun-
Aug county climate

Dependent variable:

Precipitation Mean Temp Max Temp Degree Days
(cm) (C) (C) (29C)

(1) (2) (3) (4)

Panel A: 1910 - 1965

Shelterbelt:Post 1942 0.095∗ 0.027∗ −0.007 −0.430∗∗∗

(0.057) (0.015) (0.025) (0.165)
[0.094] [0.075] [0.794] [0.022]

Downwind Neighbor:Post 1942 0.501∗∗∗ 0.025∗ −0.063∗∗∗ −0.478∗∗∗

(0.045) (0.013) (0.021) (0.165)
[0.000] [0.054] [0.003] [0.004]

Other Neighbor:Post 1942 0.366∗∗∗ 0.076∗∗∗ 0.063∗∗ 0.820
(0.061) (0.014) (0.024) (0.208)
[0.000] [0.000] [0.421] [0.000]

Panel B: 1919 - 1965

Shelterbelt:Post 1942 0.248∗∗∗ −0.059∗∗∗ −0.115∗∗∗ −1.544∗∗∗

(0.071) (0.018) (0.028) (0.209)
[0.001] [0.001] [0.000] [0.000]

Downwind Neighbor:Post 1942 0.715∗∗∗ −0.069∗∗∗ −0.147∗∗∗ −2.071∗∗∗

(0.050) (0.015) (0.025) (0.167)
[0.000] [0.000] [0.000] [0.000]

Other Neighbor:Post 1942 0.370∗∗∗ −0.018 0.004 0.020
(0.070) (0.017) (0.028) (0.246)
[0.000] [0.281] [0.895] [0.941]

Notes: Table shows results for estimating Equation 8. Dependent variables are June - August averages. Main
independent variables are Shelterbelt treatment groups shown in Figure 6. Standard errors shown in paren-
theses and calculated using the “jacknife” standard error estimator described in Section IV of Arkhangelsky
et al. (2021); p-values shown in brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.).
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Finally, we conduct long difference estimates (Eq. 2) with alternative time periods, compar-
ing time periods with similar characteristics. In Panel A of Table S12, we compare 1925-1930
– instead of 1930-1935 – to 1960-1965, to address concerns that the early 1930s were heavy
drought periods. In Panel B, we compare 1930-1935 to 1950-1955 – instead of 1960-1965 –
to compare two general drought periods in the Great Plains in the pre- and post-planting
periods. The estimates are qualitatively similar to our main long differences results.

Table S12: Impact of Great Plains Shelterbelt on Jun-Aug county climate

Dependent variable:

Precipitation Mean Temp Max Temp Degree Days
(cm) (C) (C) (29C)

(1) (2) (3) (4)

Panel A: 1925-1930 vs. 1960-1965

Wind Exposure 1.585∗∗∗ −0.451∗∗∗ −0.854∗∗∗ −9.025∗∗∗

(0.569) (0.160) (0.217) (1.964)
[0.006] [0.006] [0.000] [0.000]

Mean 6.3 24.34 31.95 38.35
Std.Dev. 1.86 2.69 2.58 20.29

Panel B: 1930-1935 vs. 1950-1955

Wind Exposure 1.247∗∗∗ −1.139∗∗∗ −1.803∗∗∗ −17.096∗∗∗

(0.453) (0.123) (0.186) (1.617)
[0.007] [0.000] [0.000] [0.000]

Mean 6.92 24.78 32.31 40.12
Std.Dev. 2.65 2.83 2.84 23.89

75th-25th Perc. Wind Exp 0.21 0.21 0.21 0.21
Observations 678 678 678 678

Notes: Table shows results for estimating Equation 2 for 678 counties, with centroids within 300km of the
centroids of Shelterbelt counties. In Panel A (B), dependent variables are calculated as the difference between
1925-1930 (1930-1935) and 1960-1965 (1950-1955) June - August averages. Main independent variable is
wind exposure (wi), which measures approximate exposure to winds from afforested areas. “75th-25th Perc
Wind Exp” shows the difference between the 75th and 25th percentile of the continuous wind exposure
measure. Controls include county-level geospatial and topographic characteristics, baseline erosion, and
baseline irrigation. State FE included. Standard errors clustered at the county level shown in parentheses;
p-values shown in brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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S.7 Irrigation

In Section 4.2, we explain how our set of baseline controls ensures that baseline irrigation
correlated with tree planting or wind exposure does not bias our results. In Figure S20,
we also show that irrigation prior to the project (left) and after the project (right) are not
correlated with Shelterbelt planting (Panel A) and our wind exposure measure (Panel B).

Figure S20: Irrigation and Shelterbelt planting

Panel A:

Panel B:

Notes: Panel A shows scatterplots of concentrated Shelterbelt planting as a share of county area on the x
axis and irrigated land as a share of county area on the y axis. Panel B shows wind exposure measure from
the Shelterbelts on the x axis and irrigated land as a share of county area on the y axis. Left plots shows
irrigation prior to the Shelterbelt project (1935), while the right plots shows post-period irrigation (1959).
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We also confirm that irrigation does not drive our main results in Tables S13 and S14,
in which we show that the downwind effects of the Shelterbelt tree planting on climate
and agricultural development are similar whether we consider counties outside the Ogallala
aquifer, where irrigation did not develop, and counties over the aquifer—where almost all
increase in irrigation happened.

Table S13: Irrigation: Impact of Great Plains Shelterbelt on Jun-Aug county climate, 1930
to 1965, by aquifer status

Dependent variable:

Precipitation Mean Temp Max Temp Degree Days
(cm) (C) (C) (29C)

(1) (2) (3) (4)

Wind Exposure:Post 1942 0.935∗∗∗ −0.705∗∗∗ −1.096∗∗∗ −10.523∗∗∗

:Ogallala (0.339) (0.109) (0.154) (1.604)
[0.006] [0.000] [0.000] [0.000]

Wind Exposure:Post 1942 1.090∗∗∗ −0.997∗∗∗ −1.694∗∗∗ −15.807∗∗∗

:Outside Ogallala (0.286) (0.110) (0.172) (1.581)
[0.000] [0.000] [0.000] [0.000]

Mean 7.06 24.48 31.97 37.82
Std.Dev. 2.82 2.82 2.94 23.37
75th-25th Perc. Wind Exp 0.21 0.21 0.21 0.21
Ogallala Counties 232 232 232 232
Outside Ogallala Counties 446 446 446 446
Observations 24,408 24,408 24,408 24,408

Notes: Table shows results for estimating Equation 1 for 678 counties, with centroids within 300km of the
centroids of Shelterbelt counties. Dependent variables are June - August averages. Main independent variable
is wind exposure (wi), which measures approximate exposure to winds from afforested areas, interacted by
a post-treatment dummy. “75th-25th Perc Wind Exp” shows the difference between the 75th and 25th
percentile of the continuous wind exposure measure. Ogallala (Outside Ogallala) is a dummy variable set
to 1 for counties over (not over) the Ogallala aquifer. Time-invariant controls, interacted by year, include
county-level geospatial and topographic characteristics, baseline erosion, and baseline irrigation. County
and state-by-year FE included. Standard errors clustered at the county level shown in parentheses; p-values
shown in brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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Table S14: Irrigation: Impact of Great Plains Shelterbelt on corn yields, production, and
area harvested, using USDA 5-year agricultural census data, 1930 to 1964, by aquifer status

Dependent variable:

Log Production Log Area Log Yields

(1) (2) (3)

Wind Exposure:Post 1942 1.854∗∗ 1.463∗ 0.391∗

:Ogallala (0.905) (0.848) (0.222)
[0.042] [0.085] [0.080]

Wind Exposure:Post 1942 2.237∗∗∗ 1.982∗∗∗ 0.256
:Outside Ogallala (0.727) (0.716) (0.248)

[0.003] [0.006] [0.304]

75th-25th Perc. Wind Exp 0.22 0.22 0.22
Ogallala Counties 134 134 134
Outside Ogallala Counties 345 345 345
Observations 3,710 3,710 3,710

Notes: Table shows results for estimating Equation 1 for 479 counties, with centroids within 300km of the
centroids of Shelterbelt counties, dropping directly afforested areas. Dependent variables are from USDA
5-year agricultural census (8 censuses between 1930 and 1964). Main independent variable is wind exposure
(wi), which measures approximate exposure to winds from afforested areas, interacted by a post-treatment
dummy. “75th-25th Perc Wind Exp” shows the difference between the 75th and 25th percentile of the
continuous wind exposure measure. Ogallala (Outside Ogallala) is a dummy variable set to 1 for counties over
(not over) the Ogallala aquifer. Time-invariant controls, interacted by year, include county-level geospatial
and topographic characteristics, baseline erosion, and baseline irrigation. County and state-by-year FE
included. Standard errors clustered at the county level shown in parentheses; p-values shown in brackets
(∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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S.8 Spatial correlation

We implement Conley standard errors to address potential concerns about spatial correlation
influencing statistical inference. We show that even using a conservative, large distance cutoff
(1000km), and a range of distance cutoffs, most of our main estimates remain statistically
significant despite slightly less precise estimation (Figure S21).

Figure S21: Robustness to Conley standard errors

Panel A: Climate outcomes

Panel B: Economic outcomes

Notes: Figures plot coefficient estimates and 95%(thin line) and 90% (thick line) confidence intervals using
for climate outcomes (Panel A) and economic outcomes (Panel B). In the first version of each regression,
we show our main results without controls (Equation 1), using clustered standard errors at the county level.
We then repeat the same regression using Conley standard errors are various distance cutoffs.
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S.9 Hyperlocal, station-level analysis

We repeat our main analysis at a hyperlocal level, using individual weather station data along
with the shapefile of the exact location and area of surviving Shelterbelt plantings (2019). We
start with weather station data from NOAA’s Global Historical Climatology Network daily
(GHCNd) data. We use the same procedure as for the construction of our main climate
data described in Appendix Section S.3. However, we use 1910 - 1965 precipitation and
temperature data and stop before interpolating to a grid. The procedure results in station-
level daily data, which we average to monthly values as before. We keep GHCNd stations
within the Shelterbelt (as defined by our Shelterbelt treatment dummy). This corresponds
to 79 precipitation and 51 temperature stations.

Using the Shelterbelt shapefile from Snow (2019), we calculate the area of tree planting
within a 25km radius of each station. We then estimate a version of our main difference-in-
differences Equation 1.

yst = βLOC(AAs × Pt) + ξt + ρs + ϵst (7)

where yst is the outcome of interest at the station-year level, AAs is the area afforested within
25km of the station (in 1000 acres), and Pt is a dummy variable equal to one for years after
1942. We include year (ξt) and station (ρs) fixed effects. βLOC is the hyperlocal effect of
planting an addition 1000 acres of trees for stations located in the Shelterbelt region.

Since we find significant spillover effects in our main analysis and these forces may impact
our selected stations, we expect that the results from the hyperlocal analysis may be lower in
magnitude than the true effect from local tree planting. Nevertheless, we find that stations
with more nearby afforestation recorded higher precipitation and lower temperatures in the
decades after the Shelterbelt project.

Appendix Table S15 shows the results. The results for precipitation are statistically signifi-
cant and imply that planting 1000 additional acres of trees in the vicinity of a station lead
to 1.2% more post-treatment summer precipitation. Average and extreme temperatures also
decreased, though these estimates are less precise. These findings show that the change in
climate due to tree planting holds at the local level.
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Table S15: Impact of Great Plains Shelterbelt on Jun-Aug station climate, 1930 to 1965

Dependent variable:

Precipitation Mean Temp Max Temp Degree Days
(cm) (C) (C) (29C)

(1) (2) (3) (4)

Afforested Area (1000 ac):Post-1942 0.306∗∗ −0.127∗∗ −0.140∗ −0.030∗

(0.151) (0.055) (0.077) (0.016)
[0.047] [0.025] [0.077] [0.067]

Observations 2,880 1,872 1,872 1,872

Notes: Table shows results for estimating a version of Equation 1 with a continuous treatment variable for
tree planting (from 2019). This treatment variable is equal to the area afforested within a 25km radius of
each station. Dependent variables are June - August averages. Station and year FE included. Standard
errors clustered at the station level shown in parentheses; p-values shown in brackets (∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01).
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S.10 Synthetic difference-in-differences

To address possible concerns with the parallel trends assumption, we repeat our difference-in-
differences with binary treatment variables analyses using a synthetic difference-in-differences
approach. Since the synthetic difference-in-differences creates parallel pre-trends across
treated and control units by design, the method also addresses concerns regarding differ-
ential exposure to the Dust Bowl.

The synthetic difference-in-differences method, described by Arkhangelsky et al. (2021),
combines features of the synthetic control and difference-in-differences methods. The syn-
thetic difference-in-differences method weakens reliance on parallel trends by reweighing and
matching pre-exposure trends. The method then uses the resulting weights in a two-way
fixed effects regressions to estimate the average causal effect of exposure to the treatment.
We use the synthetic difference-in-differences method to compare treated Shelterbelt coun-
ties to a synthetic control and to compare downwind and other neighbor counties to separate
synthetic controls. Possible contributors to the synthetic controls are counties from the pure
control group and from outside our study sample. They all come from areas in the Northern
and Southern Great Plains. Specifically, we use counties with centroids between 108°West
and 88°West.

Formally, consider a balanced panel with N total counties (e.g., Shelterbelt and pool of
untreated counties, or spillover and pool of untreated counties) indexed by i and U periods
indexed by t. Like before, treatment exposure is denoted by (Ti × Pt) ∈ {0, 1}, where Ti

indicates treatment status and Pt treatment timing. The synthetic differences method finds
weights ω̂sdid and λ̂sdid to align pre-exposure trends in treated and unexposed counties as
well as to balance pre-exposure periods with post-exposure ones. These weights are used in
the following two-way fixed effects regression

(τ̂ sdid, µ̂, α̂, β̂) = arg min {
N∑

i=1

U∑
t=1

(yit − µ− αi − βt − (Ti × Pt)τ)2ω̂sdid
i λ̂sdid

t }. (8)

The difference between Equation 8 and the standard two-way fixed effects regression de-
scribed in Equation 5 is only the addition of the unit and time weights (ω̂sdid and λ̂sdid)
(Arkhangelsky et al. 2021).

Appendix Table S16 shows the results for climate outcomes. The results for rainfall are
slightly higher in magnitude, while the results for the various temperature measures are
slightly lower in magnitude. Nonetheless the overall results are consistent with our main
difference-in-differences estimates. Appendix Table S17 presents results for corn yields,
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which are slightly lower in magnitude, but generally in line with our main results. Ap-
pendix Figures S22 and S23 shows the trends in outcomes and corresponding treatment
effects for Shelterbelt and downwind neighbor counties compared to the synthetic controls
for climate and economic outcomes.

Table S16: Synthetic Difference-in-Differences: Impact of Great Plains Shelterbelt on Jun-
Aug county climate, 1930 to 1965

Dependent variable:

Precipitation Mean Temp Max Temp Degree Days
(cm) (C) (C) (29C)

(1) (2) (3) (4)

Shelterbelt:Post 1942 0.646∗∗∗ −0.134∗∗∗ −0.213∗∗∗ −3.299∗∗∗

(0.065) (0.032) (0.045) (0.340)
[0.000] [0.000] [0.000] [0.000]

Downwind Neighbor:Post 1942 1.139∗∗∗ −0.127∗∗∗ −0.207∗∗∗ −3.882∗∗∗

(0.058) (0.0529) (0.038) (0.277)
[0.000] [0.000] [0.000] [0.000]

Other Neighbor:Post 1942 0.426∗∗∗ -0.014 -0.027 -0.256
(0.093) (0.028) (0.040) (0.316)
[0.000] [0.632] [0.512] [0.426]

Notes: Table shows results for estimating Equation 8. Dependent variables are June - August averages. Main
independent variables are Shelterbelt treatment groups shown in Figure 6. Standard errors shown in paren-
theses and calculated using the “jacknife” standard error estimator described in Section IV of Arkhangelsky
et al. (2021); p-values shown in brackets (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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Table S17: Synthetic Difference-in-Differences: Impact of Great Plains Shelterbelt on corn
yields, 1930 to 1965

Dependent variable:

Log Yield
(bu/ac)

(1) (2)

Shelterbelt:Post 1942 0.089∗∗ 0.197∗∗∗

(0.037) (0.036)
[0.037] [0.000]

Downwind Neighbor:Post 1942 0.170∗∗∗ 0.218∗∗∗

(0.035) (0.034)
[0.000] [0.000]

Other Neighbor:Post 1942 0.100∗∗∗ 0.034
(0.024) (0.038)
[0.000] [0.381]

Data Source Census Survey

Notes: Table shows results for estimating Equation 8. Main independent variables are Shelterbelt treatment
groups shown in Figure 6. Standard errors shown in parentheses and calculated using the “jacknife” standard
error estimator described in Section IV of Arkhangelsky et al. (2021); p-values shown in brackets (∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01).
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Figure S22: Climate synthetic difference-in-differences graphs

Shelterbelt:

Downwind Neighbors:

Notes: Figure shows climate synthetic difference-in-differences results graphically. Shelterbelt (top panel)
and downwind neighbor (bottom panel) precipitation and temperature trends are plotted along with their
respective synthetic controls trends; weights used to average pretreatment time periods are shown at the
bottom of the graphs in red. The synthetic difference-in-differences method emphasizes periods that are on
average more similar to treated periods, therefore the synthetic control trend (gray) is further adjusted using
the weights shown at the bottom of the graphs. The estimated effect is indicated by the arrow.
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Figure S23: Corn yields synthetic difference-in-differences graphs

Shelterbelt:

Downwind Neighbors:

Notes: Figure shows corn yield synthetic difference-in-difference results graphically. Shelterbelt (top panel)
and downwind neighbor (bottom panel) yields from the census (left panel) and agricultural surveys (right
panel) are plotted along with their respective synthetic controls trends; weights used to average pretreatment
time periods are shown at the bottom of the graphs in red. The synthetic difference-in-differences method
emphasizes periods that are on average more similar to treated periods, therefore the synthetic control trend
(gray) is further adjusted using the weights shown at the bottom of the graphs. The estimated effect is
indicated by the arrow.
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